About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 820956, 10 pages
http://dx.doi.org/10.1155/2013/820956
Review Article

The Relationship between Executive Function and Obesity in Children and Adolescents: A Systematic Literature Review

1Medical Student at the Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29403, USA
2Department of Pediatrics, Vanderbilt University Medical Center, 2146 Belcourt Avenue, 2nd Floor, Nashville, TN 37212, USA
3Diabetes Research and Training Center, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37212, USA

Received 15 November 2012; Revised 7 January 2013; Accepted 21 January 2013

Academic Editor: Ajay K. Gupta

Copyright © 2013 Kaela R. S. Reinert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, “Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010,” Journal of the American Medical Association, vol. 307, no. 5, pp. 483–490, 2012. View at Publisher · View at Google Scholar
  2. L. H. Epstein, H. Lin, K. A. Carr, and K. D. Fletcher, “Food reinforcement and obesity. Psychological moderators,” Appetite, vol. 58, no. 1, pp. 157–162, 2012. View at Publisher · View at Google Scholar
  3. N. D. Volkow, G. J. Wang, F. Telang et al., “Inverse association between BMI and prefrontal metabolic activity in healthy adults,” Obesity, vol. 17, no. 1, pp. 60–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Pannacciulli, A. del Parigi, K. Chen, D. S. N. T. Le, E. M. Reiman, and P. A. Tataranni, “Brain abnormalities in human obesity: a voxel-based morphometric study,” NeuroImage, vol. 31, no. 4, pp. 1419–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Walther, A. C. Birdsill, E. L. Glisky, and L. Ryan, “Structural brain differences and cognitive functioning related to body mass index in older females,” Human Brain Mapping, vol. 31, no. 7, pp. 1052–1064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Taki, S. Kinomura, K. Sato et al., “Relationship between body mass index and Gray Matter Volume in 1,428 healthy individuals,” Obesity, vol. 16, no. 1, pp. 119–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. C. Brune, M. K. Gerlach, M. J. Seewald, and T. G. Brune, “Early postnatal BMI adaptation is regulated during a fixed time period and mainly depends on maternal BMI,” Obesity, vol. 18, no. 4, pp. 798–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Gunstad, R. H. Paul, R. A. Cohen, D. F. Tate, M. B. Spitznagel, and E. Gordon, “Elevated body mass index is associated with executive dysfunction in otherwise healthy adults,” Comprehensive Psychiatry, vol. 48, no. 1, pp. 57–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. C. Willeumier, D. V. Taylor, and D. G. Amen, “Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults,” Obesity, vol. 19, no. 5, pp. 1095–1097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Elias, P. K. Elias, L. M. Sullivan, P. A. Wolf, and R. B. D'Agostino, “Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study,” International Journal of Obesity, vol. 27, no. 2, pp. 260–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Carlson, “Developmentally sensitive measures of executive function in preschool children,” Developmental Neuropsychology, vol. 28, no. 2, pp. 595–616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Maayan, C. Hoogendoorn, V. Sweat, and A. Convit, “Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction,” Obesity, vol. 19, no. 7, pp. 1382–1387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. I. Cohen, K. F. Yates, M. Duong, and A. Convit, “Obesity, orbitofrontal structure and function are associated with food choice: a cross-sectional study,” BMJ Open, vol. 1, no. 2, Article ID e000175, 2011. View at Publisher · View at Google Scholar
  14. Y. Rothemund, C. Preuschhof, G. Bohner et al., “Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals,” NeuroImage, vol. 37, no. 2, pp. 410–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Stice, S. Yokum, C. Bohon, N. Marti, and A. Smolen, “Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4,” NeuroImage, vol. 50, no. 4, pp. 1618–1625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Tataranni and A. DelParigi, “Functional neuroimaging: a new generation of human brain studies in obesity research,” Obesity Reviews, vol. 4, no. 4, pp. 229–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sabia, M. Kivimaki, M. J. Shipley, M. G. Marmot, and A. Singh-Manoux, “Body mass index over the adult life course and cognition in late midlife: the Whitehall II cohort study,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 601–607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Gustafson, L. Lissner, C. Bengtsson, C. Björkelund, and I. Skoog, “A 24-year follow-up of body mass index and cerebral atrophy,” Neurology, vol. 63, no. 10, pp. 1876–1881, 2004. View at Scopus
  19. H. L. St Clair-Thompson and S. E. Gathercole, “Executive functions and achievements in school: shifting, updating, inhibition, and working memory,” Quarterly Journal of Experimental Psychology, vol. 59, no. 4, pp. 745–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Best, P. H. Miller, and L. L. Jones, “Executive functions after age 5: changes and correlates,” Developmental Review, vol. 29, no. 3, pp. 180–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Hongwanishkul, K. R. Happaney, W. S. C. Lee, and P. D. Zelazo, “Assessment of hot and cool executive function in young children: age-related changes and individual differences,” Developmental Neuropsychology, vol. 28, no. 2, pp. 617–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. A. Espy, P. M. Kaufmann, M. L. Glisky, and M. D. McDiarmid, “New procedures to assess executive functions in preschool children,” Clinical Neuropsychologist, vol. 15, no. 1, pp. 46–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. P. D. Zelazo, “The dimensional change card sort (DCCS): a method of assessing executive function in children,” Nature Protocols, vol. 1, no. 1, pp. 297–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Garon, S. E. Bryson, and I. M. Smith, “Executive function in preschoolers: a review using an integrative framework,” Psychological Bulletin, vol. 134, no. 1, pp. 31–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. B. J. Casey, J. N. Giedd, and K. M. Thomas, “Structural and functional brain development and its relation to cognitive development,” Biological Psychology, vol. 54, no. 1–3, pp. 241–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. C. B. Romine and C. R. Reynolds, “A model of the development of frontal lobe functioning: findings from a meta-analysis,” Applied Neuropsychology, vol. 12, no. 4, pp. 190–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Bruce, L. E. Martin, and C. R. Savage, “Neural correlates of pediatric obesity,” Preventive Medicine, vol. 52, supplement 1, pp. S29–S35, 2011. View at Publisher · View at Google Scholar
  28. D. O'Conner, S. Green, and J. P. T. Higgins, “Defining the review question and developing criteria for including studies,” in Cochrane Handbook of Systematic Reviews of Intervention, J. P. T. Higgins and S. Green, Eds., pp. 81–94, 2008. View at Publisher · View at Google Scholar
  29. P. A. Graziano, S. D. Calkins, and S. P. Keane, “Toddler self-regulation skills predict risk for pediatric obesity,” International Journal of Obesity, vol. 34, no. 4, pp. 633–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. R. Riggs, J. Huh, C. P. Chou, D. Spruijt-Metz, and M. A. Pentz, “Executive function and latent classes of childhood obesity risk,” Journal of Behavioral Medicine, vol. 35, no. 6, pp. 642–650, 2012. View at Publisher · View at Google Scholar
  31. G. Piché, C. Fitzpatrick, and L. S. Pagani, “Kindergarten self-regulation as a predictor of body mass index and sports participation in fourth grade students,” Mind, Brain, and Education, vol. 6, no. 1, pp. 19–26, 2012. View at Publisher · View at Google Scholar
  32. L. A. Francis and E. J. Susman, “Self-regulation and rapid weight gain in children from age 3 to 12 years,” Archives of Pediatrics and Adolescent Medicine, vol. 163, no. 4, pp. 297–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kamijo, N. A. Khan, M. B. Pontifex et al., “The relation of adiposity to cognitive control and scholastic achievement in preadolescent children,” Obesity, vol. 20, no. 12, pp. 2406–2411, 2012. View at Publisher · View at Google Scholar
  34. U. Pauli-Pott, Ö. Albayrak, J. Hebebrand, and W. Pott, “Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: dependence on age and inhibitory control component,” Child Neuropsychology, vol. 16, no. 6, pp. 592–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. L. Anzman and L. L. Birch, “Low inhibitory control and restrictive feeding practices predict weight outcomes,” Journal of Pediatrics, vol. 155, no. 5, pp. 651–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. S. Bruce, L. M. Holsen, R. J. Chambers et al., “Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control,” International Journal of Obesity, vol. 34, no. 10, pp. 1494–1500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Mond, H. Stich, P. J. Hay, A. Kraemer, and B. T. Baune, “Associations between obesity and developmental functioning in pre-school children: a population-based study,” International Journal of Obesity, vol. 31, no. 7, pp. 1068–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. L. van den Berg, K. Pieterse, J. A. Malik et al., “Association between impulsivity, reward responsiveness and body mass index in children,” International Journal of Obesity, vol. 35, no. 10, pp. 1301–1307, 2011. View at Publisher · View at Google Scholar
  39. J. Huh, N. R. Riggs, D. Spruijt-Metz, C. P. Chou, Z. Huang, and M. Pentz, “Identifying patterns of eating and physical activity in children: a latent class analysis of obesity risk,” Obesity, vol. 19, no. 3, pp. 652–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Graziano, S. D. Calkins, and S. P. Keane, “Toddler self-regulation skills predict risk for pediatric obesity,” International Journal of Obesity, vol. 34, no. 4, pp. 633–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kamijo, M. B. Pontifex, N. A. Khan et al., “The association of childhood obesity to neuroelectric indices of inhibition,” Psychophysiology, vol. 49, no. 10, pp. 1361–1371, 2012. View at Publisher · View at Google Scholar
  42. N. R. Riggs, D. Spruijt-Metz, C. P. Chou, and M. A. Pentz, “Relationships between executive cognitive function and lifetime substance use and obesity-related behaviors in fourth grade youth,” Child Neuropsychology, vol. 18, no. 1, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  43. M. S. Faith and J. B. Hittner, “Infant temperament and eating style predict change in standardized weight status and obesity risk at 6 years of age,” International Journal of Obesity, vol. 34, no. 10, pp. 1515–1523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Nederkoorn, C. Braet, Y. van Eijs, A. Tanghe, and A. Jansen, “Why obese children cannot resist food: the role of impulsivity,” Eating Behaviors, vol. 7, no. 4, pp. 315–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Verdejo-García, M. Pérez-Expósito, J. Schmidt-Río-Valle et al., “Selective alterations within executive functions in adolescents with excess weight,” Obesity, vol. 18, no. 8, pp. 1572–1578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Batterink, S. Yokum, and E. Stice, “Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study,” NeuroImage, vol. 52, no. 4, pp. 1696–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Pauli-Pott, Ö. Albayrak, J. Hebebrand, and W. Pott, “Does inhibitory control capacity in overweight and obese children and adolescents predict success in a weight-reduction program?” European Child and Adolescent Psychiatry, vol. 19, no. 2, pp. 135–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Verbeken, C. Braet, L. Claus, C. Nederkoorn, and J. Oosterlaan, “Childhood obesity and impulsivity: an investigation with performance-based measures,” Behaviour Change, vol. 26, no. 3, pp. 153–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Delgado-Rico, J. S. Rio-Valle, N. Albein-Urios et al., et al., “Effects of a multicomponent behavioral intervention on impulsivity and cognitive deficits in adolescents with excess weight,” Behavioural Pharmacology, vol. 23, no. 5-6, pp. 609–615, 2012. View at Publisher · View at Google Scholar
  50. K. L. Lokken, A. G. Boeka, H. M. Austin, J. Gunstad, and C. M. Harmon, “Evidence of executive dysfunction in extremely obese adolescents: a pilot study,” Surgery for Obesity and Related Diseases, vol. 5, no. 5, pp. 547–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Cserjési, D. Molnár, O. Luminet, and L. Lénárd, “Is there any relationship between obesity and mental flexibility in children?” Appetite, vol. 49, no. 3, pp. 675–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Delgado-Rico, J. S. Rio-Valle, E. Gonzalez-Jimenez, C. Campoy, and A. Verdejo-Garcia, “BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight,” Obesity, vol. 20, no. 8, pp. 1604–1610, 2012. View at Publisher · View at Google Scholar
  53. C. L. Davis and S. Cooper, “Fitness, fatness, cognition, behavior, and academic achievement among overweight children: do cross-sectional associations correspond to exercise trial outcomes?” Preventive Medicine, vol. 52, supplement 1, pp. S65–S69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. B. J. Casey, R. J. Trainor, J. L. Orendi et al., “A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task,” Journal of Cognitive Neuroscience, vol. 9, no. 6, pp. 835–847, 1997. View at Scopus
  55. D. D. Jolles, S. W. Kleibeuker, S. A. Rombouts, and E. A. Crone, “Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads,” Developmental Science, vol. 14, no. 4, pp. 713–724, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Davids, H. Lauffer, K. Thoms et al., “Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli,” International Journal of Obesity, vol. 34, no. 1, pp. 94–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. S. Bruce, R. J. Lepping, J. M. Bruce et al., “Brain responses to food logos in obese and healthy weight children,” The Journal of Pediatrics, 2012. View at Publisher · View at Google Scholar
  58. S. Yokum, J. Ng, and E. Stice, “Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study,” Obesity, vol. 19, no. 9, pp. 1775–1783, 2011. View at Publisher · View at Google Scholar
  59. S. Durston and B. J. Casey, “Response: a shift from diffuse to focal cortical activity with development: the authors' reply,” Developmental Science, vol. 9, no. 1, pp. 18–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. J. R. Best, P. H. Miller, and J. A. Naglieri, “Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample,” Learning and Individual Differences, vol. 21, no. 4, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus