About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 874981, 11 pages
http://dx.doi.org/10.1155/2013/874981
Research Article

Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry

1Department of Food Metabolism and Nutrition, Korea Food Research Institute, 516 Paekhyon-dong, Pundang-ku, Songnam, Kyongki-do 463-747, Republic of Korea
2Research and Development Center, Nong Shim Co., Ltd., Seoul 156-709, Republic of Korea
3Department of Food & Nutrition, Yonsei University, Seoul 120-749, Republic of Korea
4Department of Food Science & Nutrition, Yongin University, Kyongki-do, 134 Samka-dong, Chuin-ku, Yongin, Kyongki-do 449-714, Republic of Korea

Received 18 December 2012; Revised 7 March 2013; Accepted 11 March 2013

Academic Editor: Xu Feng Huang

Copyright © 2013 Min Jung Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present study aimed to identify key metabolites related to weight reduction in humans by studying the metabolic profiles of sera obtained from 34 participants who underwent dietary intervention with black soybean peptides (BSP) for 12 weeks. This research is a sequel to our previous work in which the effects of BSP on BMI and blood composition of lipid were investigated. Sera of the study were subjected to ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and the data were analyzed using partial least-squares discriminate analysis (PLS-DA) score plots. Body mass index and percent body fat of the test group were reduced. Levels of betaine, benzoic acid, pyroglutamic acid, pipecolic acid, N-phenylacetamide, uric acid, l-aspartyl-l-phenylalanine, and lysophosphatidyl cholines (lysoPCs) (C18:1, C18:2, C20:1, and C20:4) showed significant increases. Levels of l-proline, valine, l-leucine/isoleucine, hypoxanthine, glutamine, l-methionine, phenylpyruvic acid, several carnitine derivatives, and lysoPCs (C14:0, PC16:0, C15:0, C16:0, C17:1, C18:0, and C22:0) were significantly decreased. In particular, lysoPC 16:0 with a VIP value of 12.02 is esteemed to be the most important metabolite for evaluating the differences between the 2 serum samples. Our result confirmed weight-lowering effects of BSP, accompanied by favorable changes in metabolites in the subjects’ blood. Therefore, this research enables us to better understand obesity and increases the predictability of the obesity-related risk by studying metabolites present in the blood.