About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2013 (2013), Article ID 984613, 10 pages
http://dx.doi.org/10.1155/2013/984613
Research Article

Physical Activity and Screen Time in Metabolically Healthy Obese Phenotypes in Adolescents and Adults

1Department of Exercise and Health Sciences, College of Nursing and Health Sciences, University of Massachusetts, Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
2Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
3Department of Nutritional Sciences, College of Allied Health, University of Oklahoma, Oklahoma City, OK, USA
4Department of Nursing, College of Nursing and Health Sciences, University of Massachusetts, Boston, MA, USA
5Department of Public Health and Professional Degree Programs, School of Medicine, Tufts University, Boston, MA, USA

Received 23 April 2013; Revised 19 July 2013; Accepted 21 July 2013

Academic Editor: Juan Pablo Rey-López

Copyright © 2013 Sarah M. Camhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Brochu, A. Tchernof, I. J. Dionne et al., “What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women?” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1020–1025, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Karelis, D. H. St-Pierre, F. Conus, R. Rabasa-Lhoret, and E. T. Poehlman, “Metabolic and body composition factors in subgroups of obesity: what do we know?” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2569–2575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Primeau, L. Coderre, A. D. Karelis et al., “Characterizing the profile of obese patients who are metabolically healthy,” International Journal of Obesity, vol. 35, no. 7, pp. 971–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. H. Sims, “Are there persons who are obese, but metabolically healthy?” Metabolism, vol. 50, no. 12, pp. 1499–1504, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Camhi and P. T. Katzmarzyk, “Prevalence of cardiometabolic risk factor clustering and body mass index in adolescents,” Journal of Pediatrics, vol. 159, no. 2, pp. 303–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. D. Karelis, M. Brochu, and R. Rabasa-Lhoret, “Can we identify metabolically healthy but obese individuals (MHO)?” Diabetes and Metabolism, vol. 30, no. 6, pp. 569–572, 2004. View at Scopus
  7. M. A. Marini, E. Succurro, S. Frontoni et al., “Metabolically healthy but obese women have an intermediate cardiovascular risk profile between healthy nonobese women and obese insulin-resistant women,” Diabetes Care, vol. 30, no. 8, pp. 2145–2147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. B. Meigs, P. W. F. Wilson, C. S. Fox et al., “Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 2906–2912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Ekelund, J. Luan, L. B. Sherar, D. W. Esliger, P. Griew, and A. Cooper, “Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents,” Journal of the American Medical Association, vol. 307, no. 7, pp. 704–712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Henson, T. Yates, S. J. Biddle, et al., “Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health,” Diabetologia, vol. 56, no. 5, pp. 1012–1020, 2013.
  12. C. A. Maher, E. Mire, D. M. Harrington, A. E. Staiano, and P. T. Katzmarzyk, “The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES, 2003-06,” Obesity, 2013. View at Publisher · View at Google Scholar
  13. V. Messier, A. D. Karelis, D. Prud'Homme, V. Primeau, M. Brochu, and R. Rabasa-Lhoret, “Identifying metabolically healthy but obese individuals in sedentary postmenopausal women,” Obesity, vol. 18, no. 5, pp. 911–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Velho, F. Paccaud, G. Waeber, P. Vollenweider, and P. Marques-Vidal, “Metabolically healthy obesity: different prevalences using different criteria,” European Journal of Clinical Nutrition, vol. 64, no. 10, pp. 1043–1051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Banks, C. Manlhiot, S. W. Dobbin, et al., “Physical activity interacts with adiposity in determining cardiometabolic risk in adolescents,” Pediatric Exercise Science, vol. 24, no. 4, pp. 537–548, 2012.
  16. N. L. Glazer, A. Lyass, D. W. Esliger, et al., “Sustained and shorter bouts of physical activity are related to cardiovascular health,” Medicine & Science in Sports & Exercise, vol. 45, no. 1, pp. 109–115, 2013.
  17. E. G. Artero, D. C. Lee, C. J. Lavie, et al., “Effects of muscular strength on cardiovascular risk factors and prognosis,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 32, no. 6, pp. 351–358, 2012.
  18. P. Dietz, S. Hoffmann, E. Lachtermann, and P. Simon, “Influence of exclusive resistance training on body composition and cardiovascular risk factors in overweight or obese children: a systematic review,” Obesity Facts, vol. 5, no. 4, pp. 546–560, 2012.
  19. M. Bopp, A. T. Kaczynski, and M. E. Campbell, “Health-related factors associated with mode of travel to work,” Journal of Environmental and Public Health, vol. 2013, Article ID 242383, 9 pages, 2013. View at Publisher · View at Google Scholar
  20. L. Ostergaard, A. Grontved, L. A. Borrestad, K. Froberg, M. Gravesen, and L. B. Andersen, “Cycling to school is associated with lower BMI and lower odds of being overweight or obese in a large population-based study of Danish adolescents,” Journal of Physical Activity and Health, vol. 9, no. 5, pp. 617–625, 2012.
  21. G. L. Furie and M. M. Desai, “Active transportation and cardiovascular disease risk factors in U.S. adults,” American Journal of Preventive Medicine, vol. 43, no. 6, pp. 621–628, 2012.
  22. P. T. Katzmarzyk, T. S. Church, C. L. Craig, and C. Bouchard, “Sitting time and mortality from all causes, cardiovascular disease, and cancer,” Medicine and Science in Sports and Exercise, vol. 41, no. 5, pp. 998–1005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Dunstan, J. Salmon, N. Owen et al., “Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults,” Diabetologia, vol. 48, no. 11, pp. 2254–2261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Ekelund, S. Brage, K. Froberg et al., “TV viewing and physical activity are independently associated with metabolic risk in children: The European Youth Heart Study,” PLoS Medicine, vol. 3, no. 12, article e488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. F. B. Hu, T. Y. Li, G. A. Colditz, W. C. Willett, and J. E. Manson, “Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women,” Journal of the American Medical Association, vol. 289, no. 14, pp. 1785–1791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Martinez-Gomez, J. C. Eisenmann, G. N. Healy et al., “Sedentary behaviors and emerging cardiometabolic biomarkers in adolescents,” Journal of Pediatrics, vol. 160, no. 1, pp. 104.e2–110.e2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Sisson, P. T. Katzmarzyk, S. R. Srinivasan et al., “Ethnic differences in subcutaneous adiposity and waist girth in children and adolescents,” Obesity, vol. 17, no. 11, pp. 2075–2081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. K. Clark, T. Sugiyama, G. N. Healy, J. Salmon, D. W. Dunstan, and N. Owen, “Validity and reliability of measures of television viewing time and other non-occupational sedentary behaviour of adults: a review,” Obesity Reviews, vol. 10, no. 1, pp. 7–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. “America Time Use Survey: Leisure and sports activities,” 2011, http://www.bls.gov/tus/charts/leisure.htm.
  30. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), “National Health and Nutrition Examination Survey Questionnaire, Examination Protocol, and Laboratory Protocol,” 2006, http://www.cdc.gov/nchs/nhanes.htm.
  31. “CDC Age- and Sex-Specific BMI SAS Program Files”.
  32. S. D. de Ferranti, K. Gauvreau, D. S. Ludwig, E. J. Neufeld, J. W. Newburger, and N. Rifai, “Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey,” Circulation, vol. 110, no. 16, pp. 2494–2497, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. USDHHS, Physical Activity Guidelines for Americans, 2008, http://www.health.gov/paguidelines/.
  35. American Academy of Pediatrics, “Children, adolescents, and television,” Pediatrics, vol. 107, no. 2, pp. 423–426, 2001.
  36. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), “National Health and Nutrition Examination Survey Data Analysis Tutorials,” 2003–2006, http://www.cdc.gov/nchs/tutorials/.
  37. C. L. Jennings, E. V. Lambert, M. Collins, Y. Joffe, N. S. Levitt, and J. H. Goedecke, “Determinants of insulin-resistant phenotypes in normal-weight and obese black african women,” Obesity, vol. 16, no. 7, pp. 1602–1609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Lee, “Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: characteristics and health behaviors,” Asia Pacific Journal of Clinical Nutrition, vol. 18, no. 2, pp. 280–284, 2009. View at Scopus
  39. L. Smith, S. Sahlqvist, D. Ogilvie, et al., “Is a change in mode of travel to school associated with a change in overall physical activity levels in children? Longitudinal results from the SPEEDY study,” The International Journal of Behavioral Nutrition and Physical Activity, vol. 9, article 134, 2012.
  40. F. B. Hu, M. F. Leitzmann, M. J. Stampfer, G. A. Colditz, W. C. Willett, and E. B. Rimm, “Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men,” Archives of Internal Medicine, vol. 161, no. 12, pp. 1542–1548, 2001. View at Scopus
  41. A. M. Craigie, A. A. Lake, S. A. Kelly, A. J. Adamson, and J. C. Mathers, “Tracking of obesity-related behaviours from childhood to adulthood: a systematic review,” Maturitas, vol. 70, no. 3, pp. 266–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Telama, “Tracking of physical activity from childhood to adulthood: a review,” Obesity Facts, vol. 2, no. 3, pp. 187–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Telama, E. Leskinen, and X. Yang, “Stability of habitual physical activity and sport participation: a longitudinal tracking study,” Scandinavian Journal of Medicine and Science in Sports, vol. 6, no. 6, pp. 371–378, 1996. View at Scopus
  44. R. Telama, X. Yang, J. Viikari, I. Välimäki, O. Wanne, and O. Raitakari, “Physical activity from childhood to adulthood: a 21-year tracking study,” American Journal of Preventive Medicine, vol. 28, no. 3, pp. 267–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. H. Biddle, N. Pearson, G. M. Ross, and R. Braithwaite, “Tracking of sedentary behaviours of young people: a systematic review,” Preventive Medicine, vol. 51, no. 5, pp. 345–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. T. J. Parsons, O. Manor, and C. Power, “Television viewing and obesity: a prospective study in the 1958 British birth cohort,” European Journal of Clinical Nutrition, vol. 62, no. 12, pp. 1355–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. M. Camhi and P. T. Katzmarzyk, “Tracking of cardiometabolic risk factor clustering from childhood to adulthood,” International Journal of Pediatric Obesity, vol. 5, no. 2, pp. 122–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. M. Camhi, P. T. Katzmarzyk, S. Broyles et al., “Predicting adult body mass index-specific metabolic risk from childhood,” Metabolic Syndrome and Related Disorders, vol. 8, no. 2, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. M. Lamb, and K. M. Flegal, “Prevalence of high body mass index in US children and adolescents, 2007-2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 242–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999-2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. G. McMurray, K. B. Ring, M. S. Treuth et al., “Comparison of two approaches to structured physical activity surveys for adolescents,” Medicine and Science in Sports and Exercise, vol. 36, no. 12, pp. 2135–2143, 2004. View at Scopus
  52. H. J. Helmerhorst, S. Brage, J. Warren, H. Besson, and U. Ekelund, “A systematic review of reliability and objective criterion-related validity of physical activity questionnaires,” The International Journal of Behavioral Nutrition and Physical Activity, vol. 9, article 103, 2012.
  53. F. Conus, D. B. Allison, R. Rabasa-Lhoret et al., “Metabolic and behavioral characteristics of metabolically obese but normal-weight women,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 5013–5020, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. V. Dvorak, W. F. DeNino, P. A. Ades, and E. T. Poehlman, “Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women,” Diabetes, vol. 48, no. 11, pp. 2210–2214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. A. D. Karelis, M. Faraj, J.-P. Bastard et al., “The metabolically healthy but obese individual presents a favorable inflammation profile,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4145–4150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Stefan, K. Kantartzis, J. Machann et al., “Identification and characterization of metabolically benign obesity in humans,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1609–1616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Succurro, M. A. Marini, S. Frontoni et al., “Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals,” Obesity, vol. 16, no. 8, pp. 1881–1886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. J. Hyun, S. J. Koh, J. S. Chae et al., “Atherogenecity of LDL and unfavorable adipokine profile in metabolically obese, normal-weight woman,” Obesity, vol. 16, no. 4, pp. 784–789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Katsuki, Y. Sumida, H. Urakawa et al., “Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance,” Diabetes Care, vol. 26, no. 8, pp. 2341–2344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Katsuki, H. Urakawa, E. C. Gabazza et al., “Quantitative insulin sensitivity check index is a useful indicator of insulin resistance in Japanese metabolically obese, normal-weight subjects with normal glucose tolerance,” Endocrine Journal, vol. 52, no. 2, pp. 253–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M.-J. Shin, Y. J. Hyun, O. Y. Kim, J. Y. Kim, Y. Jang, and J. H. Lee, “Weight loss effect on inflammation and LDL oxidation in metabolically healthy but obese (MHO) individuals: low inflammation and LDL oxidation in MHO women,” International Journal of Obesity, vol. 30, no. 10, pp. 1529–1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. M. Durward, T. J. Hartman, and S. M. Nickols-Richardson, “All-cause mortality risk of metabolically healthy obese individuals in NHANES III,” Journal of Obesity, vol. 2012, Article ID 460321, 12 pages, 2012. View at Publisher · View at Google Scholar