About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2014 (2014), Article ID 495084, 7 pages
http://dx.doi.org/10.1155/2014/495084
Research Article

Development of Automatic Visceral Fat Volume Calculation Software for CT Volume Data

1Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
2Imaging Center, The Second Affiliated Hospital, Xinjiang Medical University, The 2Rd Xiang 38, Nan Hu Dong Road, Urumqi, Xinjiang 830063, China
3Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Received 2 September 2013; Revised 22 January 2014; Accepted 13 February 2014; Published 20 March 2014

Academic Editor: Mark A. Pereira

Copyright © 2014 Mitsutaka Nemoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications, World Health Organisation, 1999.
  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (adult treatment panel III),” The Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Scopus
  3. S. Z. Yanovski, “Overweight, obesity, and health risk: National Task Force on the prevention and treatment of obesity,” Archives of Internal Medicine, vol. 160, no. 7, pp. 898–904, 2000. View at Scopus
  4. O. A. MacDougald and C. F. Burant, “The rapidly expanding family of adipokines,” Cell Metabolism, vol. 6, no. 3, pp. 159–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Shimomura, T. Funahashi, M. Takahashi et al., “Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity,” Nature Medicine, vol. 2, no. 7, pp. 800–803, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Wei, M. Punyanitya, C. Jun et al., “Waist circumference correlates with metabolic syndrome indicators better than percentage fat,” Obesity, vol. 14, no. 4, pp. 727–736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Janssen, S. B. Heymsfield, D. B. Allison, D. P. Kotler, and R. Ross, “Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat,” American Journal of Clinical Nutrition, vol. 75, no. 4, pp. 683–688, 2002. View at Scopus
  8. B. Zhao, J. Colville, J. Kalaigian et al., “Automated quantification of body fat distribution on volumetric computed tomography,” Journal of Computer Assisted Tomography, vol. 30, no. 5, pp. 777–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Tanaka, M. Yoshiyama, Y. Imanishi et al., “MR measurement of visceral fat: assessment of metabolic syndrome,” Magnetic Resonance in Medical Sciences, vol. 5, no. 4, pp. 207–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Positano, A. Gastaldelli, A. M. Sironi, M. F. Santarelli, M. Lombardi, and L. Landini, “An accurate and robust method for unsupervised assessment of abdominal fat by MRI,” Journal of Magnetic Resonance Imaging, vol. 20, no. 4, pp. 684–689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T.-H. Liou, W. P. Chan, L.-C. Pan, P.-W. Lin, P. Chou, and C.-H. Chen, “Fully automated large-scale assessment of visceral and subcutaneous abdominal adipose tissue by magnetic resonance imaging,” International Journal of Obesity, vol. 30, no. 5, pp. 844–852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Yoshizumi, T. Nakamura, M. Yamane et al., “Abdominal fat: standardized technique for measurement at CT,” Radiology, vol. 211, no. 1, pp. 283–286, 1999. View at Scopus
  13. Y. Masutani, “RBF-based representation of volumetric data: application in visualization and segmentation,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002, T. Dohi and R. Kikinis, Eds., pp. 300–307, Springer, Berlin, Germany, 2002.
  14. Y. Nomura, N. Hayashi, Y. Masutani et al., “CIRCUS: an MDA platform for clinical image analysis in hospitals,” Transactions on Mass-Data Analysis of Images and Signals, vol. 2, no. 1, pp. 112–127, 2010.