About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2014 (2014), Article ID 637635, 12 pages
http://dx.doi.org/10.1155/2014/637635
Research Article

Predicting Increased Blood Pressure Using Machine Learning

1Laboratório de Investigação da Arquitetura Cognitiva, Universidade Federal de Minas Gerais, 30000-000 Belo Horizonte, Minas Gerais, MG, Brazil
2Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, 40000-000 Bahia, BA, Brazil
3Núcleo de Pós-Graduação, Pesquisa e Extenção, Faculdade Independente do Nordeste, São Luís Avenue, 1305, 45000-000 Candeias, Vitória da Conquista, BA, Brazil

Received 16 August 2013; Revised 12 October 2013; Accepted 16 November 2013; Published 23 January 2014

Academic Editor: Yuichiro Yano

Copyright © 2014 Hudson Fernandes Golino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Hossain, B. Kawar, and M. Nahas, “Obesity and diabetes in the developing world—a growing challenge,” The New England Journal of Medicine, vol. 356, no. 3, pp. 213–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. IBGE-Instituto Brasileiro de Geografia e Estatística, “POF, 2008-2009: desnutrição cai e peso das crianças Brasileiras ultrapassa padrão internacional,” 2010, http://saladeimprensa.ibge.gov.br/noticias?view=noticia&id=1&busca=1&idnoticia=1699.
  4. G. Gürsoy, S. Ulu, Y. Acar et al., “Relation of resistın wıth obesity and some cardiovascular risk factors in hypertensive women,” Journal of Research in Medical Sciences, vol. 17, no. 5, pp. 443–447, 2012.
  5. E. Ugwuja, N. Ogbonna, A. Nwibo, and I. A. Onimawo, “Overweight and obesity, lipid profile and atherogenic indices among civil servants in Abakaliki, south eastern Nigeria,” Annals of Medical and Health Sciences Research, vol. 3, no. 1, pp. 13–18, 2013. View at Publisher · View at Google Scholar
  6. M. Dalton, A. J. Cameron, P. Z. Zimmet et al., “Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults,” Journal of Internal Medicine, vol. 254, no. 6, pp. 555–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Perichart-Perera, M. Balas-Nakash, E. Schiffman-Selechnik, A. Barbato-Dosal, and F. Vadillo-Ortega, “Obesity increases metabolic syndrome risk factors in school-aged children from an urban school in Mexico City,” Journal of the American Dietetic Association, vol. 107, no. 1, pp. 81–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Abolfotouh, I. A. Al-Alwan, and M. A. Al-Rowaily, “Prevalence of metabolic abnormalities and association with obesity among Saudi college students,” International Journal of Hypertension, vol. 2012, Article ID 819726, 8 pages, 2012. View at Publisher · View at Google Scholar
  9. L. Yong, T. Guanghui, T. Weiwei, L. Liping, and Q. Xiaosong, “Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factors in Chinese subjects?” BMC Public Health, vol. 11, article 35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. Dixon, B. J. G. Strauss, C. Laurie, and P. C. O'Brien, “Smaller hip circumference is associated with dyslipidemia and the metabolic syndrome in obese women,” Obesity Surgery, vol. 17, no. 6, pp. 770–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, E. B. Rimm, M. J. Stampfer, W. C. Willett, and F. B. Hu, “Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men,” American Journal of Clinical Nutrition, vol. 81, no. 3, pp. 555–563, 2005. View at Scopus
  12. M. A. Beydoun, M. T. Kuczmarski, Y. Wang, M. A. Mason, M. K. Evans, and A. B. Zonderman, “Receiver-operating characteristics of adiposity for metabolic syndrome: the healthy aging in neighborhoods of diversity across the life span (HANDLS) study,” Public Health Nutrition, vol. 14, no. 1, pp. 77–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. S. Erdreich and E. T. Lee, “Use of relative operating characteristic analysis in epidemiology. A method for dealing with subjective judgement,” American Journal of Epidemiology, vol. 114, no. 5, pp. 649–662, 1981. View at Scopus
  14. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer, Berlin, Germany, 2nd edition, 2009.
  15. Y.-C. Lee, W.-J. Lee, Y.-C. Lin et al., “Obesity and the decision tree: predictors of sustained weight loss after bariatric surgery,” Hepatogastroenterology, vol. 56, no. 96, pp. 1745–1749, 2009. View at Scopus
  16. P. Hertzman, “The cost effectiveness of orlistat in a 1-year weight-management programme for treating overweight and obese patients in Sweden: a treatment responder approach,” PharmacoEconomics, vol. 23, no. 10, pp. 1007–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bhattarai, V. Rus, and D. Dasgupta, “Classification of clinical conditions: a case study on prediction of obesity and its co-morbidities,” in Proceedings of the 10th International Conference on Intelligent Text Processing and Computational Linguistics (CICLING '09), Mexico City, Mexico, March 2009.
  18. O. Regnier-Coudert, J. McCall, R. Lothian, T. Lam, S. McClinton, and J. N'Dow, “Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers,” Artificial Intelligence in Medicine, vol. 55, no. 1, pp. 25–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. T. Pollettini, S. R. Panico, J. C. Daneluzzi, R. Tinós, J. A. Baranauskas, and A. A. Macedo, “Using machine learning classifiers to assist healthcare-related decisions: classification of electronic patient records,” Journal of Medical Systems, vol. 36, no. 6, pp. 3861–3874, 2012.
  20. D. Page, “Predicting clinical events from electronic health records,” in Proceedings of the Microsoft Research Machine Learning Summit, Issy-les-Moulineaux, France, 2013.
  21. K. Sharp, W. Wiegerinck, W. Burgers et al., “Searching for genetic dark matter,” in Proceedings of the Microsoft Research Machine Learning Summit, Issy-les-Moulineaux, France, 2013.
  22. A. Criminisi, “Machine learning for medical image analysis,” in Proceedings of the Microsoft Research Machine Learning Summit, Paris, France, 2013.
  23. J. T. Leek, “Predicting with trees. Coursera's data analysis class material,” 2013, https://github.com/jtleek/dataanalysis.
  24. T. G. Lohman, A. F. Roche, and R. Martorell, Anthropometric Standardization Reference Manual, Human Kinetics Books, Champaign, Ill, USA, 1988.
  25. H. Golino, “Women's dataset from the “Predicting increased blood pressure using machine learning” paper,” Figshare, 2013. View at Publisher · View at Google Scholar
  26. H. Golino, “Men's dataset from the “Predicting increased blood pressure using machine learning” paper,” Figshare, 2013. View at Publisher · View at Google Scholar
  27. B. D. Ripley, “Package “tree”: classification and regression trees. R package version 1.0-33,” 2013, http://cran.r-project.org/web/packages/tree.
  28. P. Geurts, A. Irrthum, and L. Wehenkel, “Supervised learning with decision tree-based methods in computational and systems biology,” Molecular Biosystems, vol. 5, no. 12, pp. 1593–1605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Harvard Obesity Prevention Source, Harvard School of Public Health, Cambridge, Mass, USA, http://www.hsph.harvard.edu/obesity-prevention-source/.
  30. Ministério da Saúde, “Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico,” Ministério da Saúde, Brasília, Brasil, 2011, http://portalsaude.saude.gov.br/portalsaude/arquivos/pdf/2012/Ago/22/vigitel_2011_final_0812.pdf.
  31. M. L. Oliveira, Estimativa dos custos da obesidade para o sistema único de saúde do Brasil [Ph.D. thesis], UnB, Brasília, Brasil, 2013.
  32. R. K. Dubey and E. K. Jackson, “Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms,” American Journal of Physiology, vol. 280, no. 3, pp. F365–F388, 2001. View at Scopus
  33. J. E. Hall, “The kidney, hypertension, and obesity,” Hypertension, vol. 41, no. 3, part 2, pp. 625–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Landsberg, “Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis,” Quarterly Journal of Medicine, vol. 61, no. 236, pp. 1081–1090, 1986. View at Scopus
  35. J. E. Hall, “Mechanisms of abnormal renal sodium handling in obesity hypertension,” American Journal of Hypertension, vol. 10, no. 5, part 2, pp. S49–S55, 1997. View at Scopus
  36. V. Kotsis, S. Stabouli, S. Papakatsika, Z. Rizos, and G. Parati, “Mechanisms of obesity-induced hypertension,” Hypertension Research, vol. 33, no. 5, pp. 386–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. E. Hall, A. A. da Silva, J. M. do Carmo et al., “Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 17271–17276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. World Health Organization, “Obesity: preventing and managing the global epidemic,” Report of a WHO Consultation WHO Technical Report Series 894, WHO, Geneva, Switzerland, 2000.
  39. G. Velasquez-Melendez, A. M. Pimenta, and G. Kac, “Epidemiologia do sobrepeso e da obesidade e seus fatores determinantes em Belo Horizonte (MG), Brasil: estudo transversal de base populacional,” Revista Panamericana de Salud Publica, vol. 16, no. 5, pp. 308–314, 2004. View at Publisher · View at Google Scholar
  40. World Health Organization, “Waist circumference and waist-hip ratio,” Report of a WHO Expert ConsultAtion, WHO, Geneva, Switzerland, 2008.
  41. O. S. Adediran, P. B. Adebayo, and A. A. Akintunde, “Anthropometric differences among natives of Abuja living in urban and rural communities: correlations with other cardiovascular risk factors,” BMC Research Notes, vol. 6, article 123, 2013. View at Publisher · View at Google Scholar
  42. A. Misra, N. Vikram, R. Gupta, R. Pandey, V. Gupta, and J. Wasir, “Waist circumference cutoff points and action levels for Asian Indians for identification of abdominal obesity,” International Journal of Obesity, vol. 30, no. 1, pp. 106–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. J. Dobbelsteyn, M. R. Joffres, D. R. MacLean, and G. Flowerdew, “A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian heart health surveys,” International Journal of Obesity, vol. 25, no. 5, pp. 652–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Gliner, N. Leech, and G. Morgan, “Problems with null hypothesis significance testing (NHST): what do the textbooks say?” Journal of Experimental Education, vol. 71, no. 1, pp. 83–92, 2002. View at Scopus
  45. L. S. Erdreich and E. T. Lee, “Use of relative operating characteristic analysis in epidemiology. A method for dealing with subjective judgement,” American Journal of Epidemiology, vol. 114, no. 5, pp. 649–662, 1981. View at Scopus
  46. Y.-C. Lee, W.-J. Lee, Y.-C. Lin et al., “Obesity and the decision tree: predictors of sustained weight loss after bariatric surgery,” Hepatogastroenterology, vol. 56, no. 96, pp. 1745–1749, 2009. View at Scopus
  47. L. S. Barbosa, L. C. N. Scala, and M. G. Ferreira, “Associação entre marcadores antropométricos de adiposidade corporal e hipertensão arterial na população adulta de Cuiabá, Mato Grosso,” Revista Brasileira de Epidemiologia, vol. 12, no. 2, pp. 237–247, 2009. View at Publisher · View at Google Scholar
  48. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. Global Health Organization, “Noncommunicable diseases,” 2013, http://www.who.int/gho/ncd/en/index.html.