About this Journal Submit a Manuscript Table of Contents
Journal of Obesity
Volume 2014 (2014), Article ID 834865, 12 pages
http://dx.doi.org/10.1155/2014/834865
Clinical Study

Continuous Exercise but Not High Intensity Interval Training Improves Fat Distribution in Overweight Adults

1Discipline of Exercise and Sports Science, The University of Sydney, Lidcombe, NSW 2141, Australia
2Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, The University of Sydney, Sydney, NSW 2006, Australia

Received 18 July 2013; Revised 17 October 2013; Accepted 22 November 2013; Published 16 January 2014

Academic Editor: George P. Nassis

Copyright © 2014 Shelley E. Keating et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Macera, D. A. Jones, M. M. Yore, S. A. Ham, C. D. Kimsey, and D. Buchner, “Prevalence of physical activity, including lifestyle activities among adults—United States, 2000-2001,” US Center for Disease Control, Atlanta, Ga, USA, 2003.
  2. A. Bauman and N. Owen, “Physical activity of adult Australians: epidemiological evidence and potential strategies for health gain,” Journal of Science and Medicine in Sport, vol. 2, no. 1, pp. 30–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Burgomaster, K. R. Howarth, S. M. Phillips et al., “Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans,” The Journal of Physiology, vol. 586, no. 1, pp. 151–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. G. Trapp, D. J. Chisholm, J. Freund, and S. H. Boutcher, “The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women,” International Journal of Obesity, vol. 32, no. 4, pp. 684–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Nybo, E. Sundstrup, M. D. Jakobsen et al., “High-intensity training versus traditional exercise interventions for promoting health,” Medicine & Science in Sports & Exercise, vol. 42, no. 10, pp. 1951–1958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Babraj, N. B. Vollaard, C. Keast, F. M. Guppy, G. Cottrell, and J. A. Timmons, “Extremely short duration high intensity interval training substantially improves insulin action in young healthy males,” BMC Endocrine Disorders, vol. 9, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. G. Ciolac, E. A. Bocchi, L. A. Bortolotto, V. O. Carvalho, J. M. D. Greve, and G. V. Guimaraes, “Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension,” Hypertension Research, vol. 33, no. 8, pp. 836–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. MacPherson, T. J. Hazell, T. D. Olver, D. H. Paterson, and P. W. R. Lemon, “Run sprint interval training improves aerobic performance but not maximal cardiac output,” Medicine & Science in Sports & Exercise, vol. 43, no. 1, pp. 115–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. R. Thomas, S. B. Adeniran, and G. L. Etheridge, “Effects of different running programs on VO2 max, percent fat, and plasma lipids,” Canadian Journal of Applied Sport Sciences, vol. 9, no. 2, pp. 55–62, 1984. View at Scopus
  10. K. A. Burgomaster, S. C. Hughes, G. J. F. Heigenhauser, S. N. Bradwell, and M. J. Gibala, “Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans,” Journal of Applied Physiology, vol. 98, no. 6, pp. 1985–1990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Little, A. Safdar, G. P. Wilkin, M. A. Tarnopolsky, and M. J. Gibala, “A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms,” The Journal of Physiology, vol. 588, no. 6, pp. 1011–1022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Hood, J. P. Little, M. A. Tarnopolsky, F. Myslik, and M. J. Gibala, “Low-volume interval training improves muscle oxidative capacity in sedentary adults,” Medicine & Science in Sports & Exercise, vol. 43, no. 10, pp. 1849–1856, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. J. Whyte, J. M. R. Gill, and A. J. Cathcart, “Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men,” Metabolism, vol. 59, no. 10, pp. 1421–1428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Wallman, L. A. Plant, B. Rakimov, and A. J. Maiorana, “The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population,” Research in Sports Medicine, vol. 17, no. 3, pp. 156–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Richards, T. K. Johnson, J. N. Kuzma et al., “Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to β-adrenergic stimulation,” The Journal of Physiology, vol. 588, no. 15, pp. 2961–2972, 2010. View at Scopus
  16. I. E. Schjerve, G. A. Tyldum, A. E. Tjønna et al., “Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults,” Clinical Science, vol. 115, no. 9, pp. 283–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. E. Tjønna, S. J. Lee, Ø. Rognmo et al., “Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study,” Circulation, vol. 118, no. 4, pp. 346–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Moholdt, I. L. Aamot, I. Granøien et al., “Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: a randomized controlled study,” Clinical Rehabilitation, vol. 26, no. 1, pp. 33–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Ø. Rognmo, E. Hetland, J. Helgerud, J. Hoff, and S. A. Slørdahl, “High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease,” European Journal of Cardiovascular Prevention & Rehabilitation, vol. 11, no. 3, pp. 216–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Wisløff, Ø. Ellingsen, and O. J. Kemi, “High-intensity interval training to maximize cardiac benefits of exercise training?” Exercise and Sport Sciences Reviews, vol. 37, no. 3, pp. 139–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. E. R. Warburton, D. C. McKenzie, M. J. Haykowsky et al., “Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease,” The American Journal of Cardiology, vol. 95, no. 9, pp. 1080–1084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Little, J. B. Gillen, M. E. Percival et al., “Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes,” Journal of Applied Physiology, vol. 111, no. 6, pp. 1554–1560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Mourier, J.-F. Gautier, E. De Kerviler et al., “Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM: effects of branched-chain amino acid supplements,” Diabetes Care, vol. 20, no. 3, pp. 385–391, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Boudou, E. Sobngwi, F. Mauvais-Jarvis, P. Vexiau, and J.-F. Gautier, “Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men,” European Journal of Endocrinology, vol. 149, no. 5, pp. 421–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. E. Tjønna, T. O. Stølen, A. Bye et al., “Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents,” Clinical Science, vol. 116, no. 3-4, pp. 317–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Tremblay, J.-A. Simoneau, and C. Bouchard, “Impact of exercise intensity on body fatness and skeletal muscle metabolism,” Metabolism, vol. 43, no. 7, pp. 814–818, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Heydari, J. Freund, and S. H. Boutcher, “The effect of high-intensity intermittent exercise on body composition of overweight young males,” Journal of Obesity, vol. 2012, Article ID 480467, 8 pages, 2012. View at Publisher · View at Google Scholar
  28. E. G. Trapp, D. J. Chisholm, and S. H. Boutcher, “Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise,” American Journal of Physiology, vol. 293, no. 6, pp. 2370–2375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Guiraud, A. Nigam, V. Gremeaux, P. Meyer, M. Juneau, and L. Bosquet, “High-intensity interval training in cardiac rehabilitation,” Sports Medicine, vol. 42, no. 7, pp. 587–605, 2012. View at Publisher · View at Google Scholar
  30. R. Coppoolse, A. Schols, E. Baarends et al., “Interval versus continuous training in patients with severe COPD: a randomized clinical trial,” European Respiratory Journal, vol. 14, no. 2, pp. 258–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Armijo-Olivo, S. Warren, and D. Magee, “Intention to treat analysis, compliance, drop-outs and how to deal with missing data in clinical research: a review,” Physical Therapy Reviews, vol. 14, no. 1, pp. 36–49, 2009. View at Publisher · View at Google Scholar
  32. G. Borg, “Psychophysical bases of perceived exertion,” Medicine & Science in Sports & Exercise, vol. 14, no. 5, pp. 377–381, 1982. View at Scopus
  33. H. Kuipers, F. T. J. Verstappen, and H. A. Keizer, “Variability of aerobic performance in the laboratory and its physiologic correlates,” International Journal of Sports Medicine, vol. 6, no. 4, pp. 197–201, 1985. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Hawley and T. Noakes, “Peak power output predicts maximal oxygen uptake and performance time in trained cyclists,” European Journal of Applied Physiology and Occupational Physiology, vol. 65, no. 1, pp. 79–83, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. K. G. M. M. Alberti, P. Zimmet, and J. Shaw, “Metabolic syndrome—a new world-wide definition. a consensus statement from the International Diabetes Federation,” Diabetic Medicine, vol. 23, no. 5, pp. 469–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Bouchard, A. Tremblay, and C. Leblanc, “A method to assess energy expenditure in children and adults,” American Journal of Clinical Nutrition, vol. 37, no. 3, pp. 461–467, 1983. View at Scopus
  37. C. E. Garber, B. Blissmer, M. R. Deschenes et al., “Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise,” Medicine & Science in Sports & Exercise, vol. 43, no. 7, pp. 1334–1359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. American College of Sports Medicine, ACSM's Guidelines for Exercise Testing and Prescription, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 8th edition, 2010.
  39. J. Myers, A. Kaykha, S. George et al., “Fitness versus physical activity patterns in predicting mortality in men,” American Journal of Medicine, vol. 117, no. 12, pp. 912–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Fujioka, Y. Matsuzawa, K. Tokunaga, and S. Tarui, “Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity,” Metabolism, vol. 36, no. 1, pp. 54–59, 1987. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Nakamura, K. Tokunaga, I. Shimomura et al., “Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men,” Atherosclerosis, vol. 107, no. 2, pp. 239–246, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Pischon, H. Boeing, K. Hoffmann, et al., “General and abdominal adiposity and risk of death in Europe,” The New England Journal of Medicine, vol. 359, no. 20, pp. 2105–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Ismail, S. E. Keating, M. K. Baker, and N. A. Johnson, “A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat,” Obesity Reviews, vol. 13, no. 1, pp. 68–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Burguera, D. Proctor, N. Dietz, Z. Guo, M. Joyner, and M. D. Jensen, “Leg free fatty acid kinetics during exercise in men and women,” American Journal of Physiology, vol. 278, no. 1, pp. 113–117, 2000. View at Scopus
  46. P. Arner, E. Kriegholm, P. Engfeldt, and J. Bolinder, “Adrenergic regulation of lipolysis in situ at rest and during exercise,” Journal of Clinical Investigation, vol. 85, no. 3, pp. 893–898, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Christmass, B. Dawson, and P. G. Arthur, “Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise,” European Journal of Applied Physiology and Occupational Physiology, vol. 80, no. 5, pp. 436–447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. C. J. Pritzlaff, L. Wideman, J. Blumer et al., “Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men,” Journal of Applied Physiology, vol. 89, no. 3, pp. 937–946, 2000. View at Scopus
  49. B. A. Irving, C. K. Davis, D. W. Brock et al., “Effect of exercise training intensity on abdominal visceral fat and body composition,” Medicine & Science in Sports & Exercise, vol. 40, no. 11, pp. 1863–1872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. T. S. Church, C. K. Martin, A. M. Thompson, C. P. Earnest, C. R. Mikus, and S. N. Blair, “Changes in weight, waist circumference and compensatory responses with different doses of exercise among sedentary, overweight postmenopausal women,” PLoS One, vol. 4, no. 2, Article ID e4515, 2009. View at Publisher · View at Google Scholar · View at Scopus