- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Article Processing Charges ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Recently Accepted Articles ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Journal of Operators

Volume 2013 (2013), Article ID 813707, 6 pages

http://dx.doi.org/10.1155/2013/813707

## Some Common Fixed Point Results for Rational Type Contraction Mappings in Complex Valued Metric Spaces

^{1}Department of Mathematics, Khalsa College of Engineering & Technology (Punjab Technical University), Ranjit Avenue, Amritsar 143001, India^{2}Department of Mathematics, Lovely Professional University, Phagwara 144411, India

Received 21 March 2013; Accepted 8 May 2013

Academic Editor: Ram U. Verma

Copyright © 2013 Sumit Chandok and Deepak Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

We prove some common fixed point theorems for two pairs of weakly compatible mappings satisfying a rational type contractive condition in the framework of complex valued metric spaces. The proved results generalize and extend some of the known results in the literature.

#### 1. Introduction and Preliminaries

The famous Banach contraction principle states that if is a complete metric space and is a contraction mapping (i.e., for all , where is a nonnegative number such that ), then has a unique fixed point. This principle is one of the cornerstones in the development of nonlinear analysis. Fixed point theorems have applications not only in the different branches of mathematics, but also in economics, chemistry, biology, computer science, engineering, and others. Due to its importance, generalizations of Banach’s contraction principle have been investigated heavily by several authors. Fixed point and common fixed point theorems for different types of nonlinear contractive mappings have been investigated extensively by various researchers (see [1–35] and references cited therein).

Recently, Azam et al. [1] introduced the complex valued metric space, which is more general than the well-known metric spaces. Many researchers have obtained fixed point, common fixed point, coupled fixed point, and coupled common fixed point results in partially ordered metric spaces, complex valued metric spaces, and other spaces. In this paper, we prove some common fixed point theorems for two pairs of weakly mappings satisfying a contractive condition of rational type in the framework of complex valued metric spaces. The proved results generalize and extend some of the results in the literature.

To begin with, we recall some basic definitions, notations, and results.

The following definitions of Azam et al. [1] are needed in the sequel.

Let be the set of complex numbers, and let . Define a partial order on as follows: It follows that if one of the following conditions is satisfied:(1), and ;(2), and ;(3), and ;(4), and .In particular, we will write if and one of (1), (2), and (3) is satisfied, and we will write if only (3) is satisfied.

*Note*. We obtained that the following statements hold:(i) and , for all ;(ii);(iii) and imply .

*Definition 1. *Let be a nonempty set. Suppose that the mapping satisfies the following conditions:(i) for all and if and only if ;(ii) for all ;(iii) for all .Then, is called a complex valued metric on , and is called a complex valued metric space.

*Example 2. *Let . Define a mapping by
where . Then, is a complex valued metric space.

A point is called an *interior point* of a set whenever there exists such that . A subset in is called *open*, whenever each point of is an interior point of . The family is a subbasis for a Hausdorff topology on .

A point is called a *limit point* of , whenever for every , . A subset is called *closed*, whenever each limit point of belongs to .

Let be a sequence in and . If for every , with , there is such that for all , , then is called the limit of , and we write .

If for every , with , there is an such that for all , , then is called a Cauchy sequence in . If every Cauchy sequence is convergent in , then is called a complete complex valued metric space.

Lemma 3 (see [1]). *Let be a complex valued metric space and a sequence in . Then, converges to if and only if as . *

Lemma 4 (see [1]). * Let be a complex valued metric space and a sequence in . Then, is a Cauchy sequence if and only if as . *

Let be a nonempty subset of a metric space . Let and be mappings from a metric space into itself. A point is a *common fixed* (resp., *coincidence) point* of and if (resp., ). The set of fixed points (resp., coincidence points) of and is denoted by (resp., ).

In 1986, Jungck [22] introduced the more generalized commuting mappings in metric spaces, called compatible mappings, which also are more general than the concept of weakly commuting mappings (i.e., the mappings are said to be *weakly commuting* if for all ) introduced by Sessa [28].

*Definition 5. *Let and be mappings from a metric space into itself. The mappings and are said to be *compatible* if
whenever is a sequence in such that for some .

In general, commuting mappings are weakly commuting, and weakly commuting mappings are compatible, but the converses are not necessarily true, and some examples can be found in [22–24].

*Definition 6. *The mappings and are said to be *weakly compatible* if they commute at coincidence points of and .

*Definition 7. * Let be two self-mappings of a complex valued metric space . The pair is said to satisfy *(E.A.) property* (see [35]) if there exists a sequence in such that , for some .

Pathak et al. [27] showed that weakly compatibility and (E.A.) property are independent of each other.

*Definition 8. *The self mappings and from to are said to satisfy the *common limit in the range of ** property* ( *property*) (see [31]) if , for some .

Some recent papers related to (*CLR*)* property* and the complex valued metric spaces can be found in [1, 3, 27, 31–35] and references cited therein.

#### 2. Main Results

##### 2.1. Common Fixed Point Theorem Using (E.A.) Property

In this section, we prove some common fixed point theorems using (E.A.) property in the complex valued metric spaces.

Theorem 9. * Let be a complex valued metric space and , , , four self-mappings satisfying the following conditions:* (i)*, ;* (ii)* for all and ,
* (iii)* the pairs and are weakly compatible;* (iv)* one of the pairs or satisfies (E.A.)-property.**If the range of one of the mappings or is a closed subspace of , then the mappings , , , and have a unique common fixed point in .*

*Proof. *First, we suppose that the pair satisfies (E.A.) property. Then, by Definition 7 there exists a sequence in such that for some .

Further, since , there exists a sequence in such that . Hence, . We claim that . Let , then putting , in condition (ii), we have
Letting , we have
Then, ; hence, and that is, .

Now suppose that is a closed subspace of , then for some . Subsequently, we have
We claim that . Put and in contractive condition (ii), and we have
Letting and using (7), we have
Then, , which is contradiction. Hence, is a coincidence point of .

Now the weak compatibility of pair implies that or .

On the other hand, since , there exists in such that . Thus, . Now, we show that is a coincidence point of ; that is, . Put , in contractive condition (ii), and we have
or
whence , which is a contradiction. Thus, . Hence, , and is the coincidence point of and .

Further, the weak compatibility of pair implies that , or . Therefore, is a common coincidence point of , , , and .

Now, we show that is a common fixed point. Put and in contractive condition (ii), and we have
or , which is a contradiction. Thus, . Hence, .

Similar argument arises if we assume that is closed subspace of . Similarly, the (E.A.)-property of the pair will give a similar result.

For uniqueness of the common fixed point, let us assume that is another common fixed point of , , , and . Then, put , in contractive condition (ii), and we have
or , which is a contradiction. Thus, . Hence, , and is the unique common fixed point of , , , and .

*Remark 10. *(a) Continuity of mappings , , , and* * is relaxed in Theorem 9.

(b) Completeness of space is relaxed in Theorem 9.

If and in Theorem 9, we have the following result.

Corollary 11. *Let be a complex valued metric space and self-mappings satisfying the following conditions:* (i)*;* (ii)* for all and ,
* (iii)* the pair is weakly compatible;* (iv)* the pair satisfies (E.A.)-property.**If the range of the mapping is a closed subspace of , then and have a unique common fixed point in .*

Theorem 12. *Let be a complex valued metric space and , , , four self-mappings satisfying the following conditions:* (i)*, ;* (ii)* for all and ,
**where ;* (iii)* the pairs and are weakly compatible;* (iv)* one of the pairs or satisfies (E.A.)-property.**If the range of one of the mappings or is a closed subspace of , then the mappings , , , and have a unique common fixed point in . *

*Proof. *Using the same arguments as in Theorem 9, we have the following result.

##### 2.2. Fixed Point Theorem Using (CLR)-Property

In this section, we prove some common fixed point theorems using (CLR) property in the complex valued metric spaces.

Theorem 13. *Let be a complex valued metric space and , , , and four self-mappings satisfying the following conditions:* (i)*, ;* (ii)* for all and ,
* (iii)* the pairs and are weakly compatible.**If the pair satisfies property or satisfies property, then , , and have a unique common fixed point in .*

*Proof. *First, we suppose that the pair satisfies property. Then, by Definition 8, there exists a sequence in such that
for some .

Further, since , we have , for some . We claim that . Put and in contractive condition (ii), and we have
letting and using (17), we have
Then, , which is contradiction. Thus, . Hence, .

Now, the weak compatibility of pair implies that, or .

Further, since , there exists in such that . Thus, .

Now, we show that is a coincidence point of that is, . Put , in contractive condition (ii), and we have
or
whence , which is a contradiction. Thus, . Hence, , and is coincidence point of and .

Further, the weak compatibility of pair implies that , or . Therefore, is a common coincidence point of , , , and .

Now, we show that is a common fixed point. Put and in contractive condition (ii), and we have
or , which is a contradiction. Thus, . Hence, . The uniqueness of the common fixed point follows easily.

In a similar way, the argument that the pair satisfies property will also give the unique common fixed point of , , and . Hence the result follows.

Following the similar steps as in Theorem 13, we have the following result.

Theorem 14. *Let be a complex valued metric space and , , , and four self-mappings satisfying the following conditions:* (i)*, ;* (ii)* for all and ,
**where ;* (iii)* the pairs and are weakly compatible.**If the pair satisfy property or satisfies property, then , , , and have a unique common fixed point in . *

*Remark 15. *In this paper, we used the (E.A.) property and CLR property to claim the existence of common fixed point of some rational type contraction mappings. (E.A.) property requires the condition of closedness of subspace. However, property never requires any condition on closedness of subspace, continuity of one or more mappings and containment of ranges of involved mappings. So, property is an interesting auxiliary tool to claim the existence of a common fixed point.

#### Acknowledgment

The authors are thankful to the learned referees for the very careful reading and valuable suggestions.

#### References

- A. Azam, B. Fisher, and M. Khan, “Common fixed point theorems in complex valued metric spaces,”
*Numerical Functional Analysis and Optimization*, vol. 32, no. 3, pp. 243–253, 2011. View at Publisher · View at Google Scholar · View at MathSciNet - G. V. R. Babu and P. Subhashini, “Coupled common fixed point theorems of Ciric type
*g*-weak contractions with*CLRg*-property,”*Journal of Nonlinear Analysis and Optimization: Theory and Applications*. In press. - S. Bhatt, S. Chaukiyal, and R. C. Dimri, “A common fixed point theorem for weakly compatible maps in complex valued metric spaces,”
*International Journal of Mathematical Sciences & Applications*, vol. 1, no. 3, pp. 1385–1389, 2011. View at MathSciNet - S. Chandok, “Some common fixed point theorems for generalized nonlinear contractive mappings,”
*Computers & Mathematics with Applications*, vol. 62, no. 10, pp. 3692–3699, 2011. View at Publisher · View at Google Scholar · View at MathSciNet - S. Chandok, “Common fixed points, invariant approximation and generalized weak contractions,”
*International Journal of Mathematics and Mathematical Sciences*, vol. 2012, Article ID 102980, 11 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet - S. Chandok, “Some common fixed point theorems for Ciric type contraction mapping,”
*Tamkang Journal of Mathematics*, vol. 43, no. 2, pp. 187–202, 2012. View at Publisher · View at Google Scholar · View at MathSciNet - S. Chandok, “Common fixed points for generalized nonlinear contractive mappings in metric spaces,”
*Matematichki Vesnik*, vol. 65, no. 1, pp. 29–34, 2013. View at MathSciNet - S. Chandok, “Some common fixed point theorems for a pair of different compatible type mappings,”
*Annales Ordea University-Matematică Fascicola*, vol. 20, no. 2, 2013. - S. Chandok, “Some common fixed point results for generalized weak contractive mappings in partially ordered metric spaces,”
*Journal of Nonlinear Analysis and Optimization: Theory and Applications*, vol. 4, no. 1, pp. 45–52, 2013. - S. Chandok, M. S. Khan, and K. P. R. Rao, “Some coupled common fixed point theorems for a pair of mappings satisfying a contractive condition of rational type without monotonicity,”
*International Journal of Mathematical Analysis*, vol. 7, no. 9–12, pp. 433–440, 2013. View at MathSciNet - S. Chandok and J. K. Kim, “Fixed point theorem in ordered metric spaces for generalized contractions mappings satisfying rational type expressions,”
*Journal of Nonlinear Functional Analysis and Application*, vol. 17, no. 3, pp. 301–306, 2012. - S. Chandok, J. Liang, and D. O'Regan, “Common fixed points and invariant approximations for noncommuting contraction mappings in strongly convex metric spaces,”
*Journal of Nonlinear and Convex Analysis*, vol. 14, 2013. - S. Chandok, Z. Mustafa, and M. Postolache, “Coupled common fixed point theorems for mixed
*g*-monotone mappings in partially ordered*G*-metric spaces,”*UPB Scientific Bulletin A*. In press. - S. Chandok, T. D. Narang, and M. A. Taoudi, “Some common fixed point results in partially ordered metric spaces for generalized rational type contraction mappings,”
*Vietnam Journal of Mathematics*. View at Publisher · View at Google Scholar - S. Chauhan, W. Sintunavarat, and P. Kumam, “Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces using (JCLR)-property,”
*Applied Mathematics*, vol. 3, no. 9, pp. 976–982, 2012. View at Publisher · View at Google Scholar - S. Chauhan, “Fixed points of weakly compatible mappings in fuzzy metric spaces satisfying common limit in the range property,”
*Indian Journal of Mathematics*, vol. 54, no. 3, pp. 375–397, 2012. - S. Chauhan, S. Bhatnagar, and S. Radenovic, “Common fixed point theorems for weakly compatible mappings infuzzy metric spaces,”
*Le Matematiche*. In press. - S. D. Diwan and R. Gupta, “A common fixed point theorem for Gregus type mappings,”
*Thai Journal of Mathematics*. In press. - M. Imdad, B. D. Pant, and S. Chauhan, “Fixed point theorems in Menger spaces using the ${CLR}_{ST}$ property and applications,”
*Journal of Nonlinear Analysis and Optimization*, vol. 3, no. 2, pp. 225–237, 2012. View at MathSciNet - M. Jain, K. Tas, S. Kumar, and N. Gupta, “Coupled fixed point theorems for a pair of weakly compatible maps along with
*CLRg*-property in fuzzy metric spaces,”*Journal of Applied Mathematics*, vol. 2012, Article ID 961210, 13 pages, 2012. View at MathSciNet - M. Jain and S. Kumar, “A common fixed point theorem in fuzzy metric space using the property (
*CLRg*),”*Thai Journal of Mathematics*. In press. - G. Jungck, “Compatible mappings and common fixed points,”
*International Journal of Mathematics and Mathematical Sciences*, vol. 9, no. 4, pp. 771–779, 1986. View at Publisher · View at Google Scholar · View at MathSciNet - G. Jungck, “Compatible mappings and common fixed points. II,”
*International Journal of Mathematics and Mathematical Sciences*, vol. 11, no. 2, pp. 285–288, 1988. View at Publisher · View at Google Scholar · View at MathSciNet - G. Jungck, “Common fixed points for commuting and compatible maps on compacta,”
*Proceedings of the American Mathematical Society*, vol. 103, no. 3, pp. 977–983, 1988. View at Publisher · View at Google Scholar · View at MathSciNet - G. Jungck and B. E. Rhoades, “Fixed point theorems for occasionally weakly compatible mappings,”
*Fixed Point Theory*, vol. 7, no. 2, pp. 287–296, 2006. View at MathSciNet - M. Kumar, P. Kumar, and S. Kumar, “Some common fixed point theorems using (
*CLRg*)-property in cone metric spaces,”*Advances Fixed Point Theory*, vol. 2, no. 3, pp. 340–356, 2012. - H. K. Pathak, R. Rodríguez-López, and R. K. Verma, “A common fixed point theorem of integral type using implicit relation,”
*Nonlinear Functional Analysis and Applications*, vol. 15, no. 1, pp. 1–12, 2010. View at MathSciNet - S. Sessa, “On a weak commutativity condition of mappings in fixed point considerations,”
*Institut Mathématique. Publications*, vol. 32, no. 46, pp. 149–153, 1982. View at MathSciNet - W. Sintunavarat and P. Kumam, “Weak condition for generalized multi-valued $(f,\alpha ,\beta )$-weak contraction mappings,”
*Applied Mathematics Letters*, vol. 24, no. 4, pp. 460–465, 2011. View at Publisher · View at Google Scholar · View at MathSciNet - W. Sintunavarat, Y. J. Cho, and P. Kumam, “Common fixed point theorems for $c$-distance in ordered cone metric spaces,”
*Computers & Mathematics with Applications*, vol. 62, no. 4, pp. 1969–1978, 2011. View at Publisher · View at Google Scholar · View at MathSciNet - W. Sintunavarat and P. Kumam, “Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces,”
*Journal of Applied Mathematics*, vol. 2011, Article ID 637958, 14 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet - W. Sintunavarat and P. Kumam, “Generalized common fixed point theorems in complex valued metric spaces and applications,”
*Journal of Inequalities and Applications*, vol. 2012, article 84, 2012. View at Publisher · View at Google Scholar · View at MathSciNet - W. Sintunavarat and P. Kumam, “Common fixed points for $R$-weakly commuting in fuzzy metric spaces,”
*Annali dell'Universitá di Ferrara*, vol. 58, no. 2, pp. 389–406, 2012. View at Publisher · View at Google Scholar · View at MathSciNet - W. Sintunavarat, Y. J. Cho, and P. Kumam, “Urysohn integral equations approach by common fixed points in complex valued metric spaces,”
*Advances in Difference Equations*, vol. 2013, article 49, 2013. - R. K. Verma and H. K. Pathak, “Common fixed point theorems using property (E.A) in complex-vauled metric spaces,”
*Thai Journal of Mathematics*. In press.