About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2010 (2010), Article ID 172593, 6 pages
http://dx.doi.org/10.1155/2010/172593
Review Article

Human Genetics of Diabetic Retinopathy: Current Perspectives

Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive MD3, Singapore 117597

Received 4 January 2010; Accepted 16 June 2010

Academic Editor: Susanne Mohr

Copyright © 2010 Daniel P. K. Ng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Resnikoff, D. Pascolini, D. Etya'ale et al., “Global data on visual impairment in the year 2002,” Bulletin of the World Health Organization, vol. 82, no. 11, pp. 844–851, 2004. View at Scopus
  2. J. H. Kempen, B. J. O'Colmain, M. C. Leske et al., “The prevalence of diabetic retinopathy among adults in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 552–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. S. See, T. Y. Wong, and K. T. Yeo, “Trends in the pattern of blindness and major ocular diseases in Singapore and Asia,” Annals of the Academy of Medicine Singapore, vol. 27, no. 4, pp. 540–546, 1998. View at Scopus
  4. International Diabetes Federation, The Diabetes Atlas, 4th edition, 2009.
  5. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Keenan, T. Costacou, J. K. Sun et al., “Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study,” Diabetes Care, vol. 30, no. 8, pp. 1995–1997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Pyke and R. B. Tattersall, “Diabetic retinopathy in identical twins,” Diabetes, vol. 22, no. 8, pp. 613–618, 1973. View at Scopus
  9. The Diabetes Control and Complications Trial Research Group, “Clustering of long-term complications in families with diabetes in the diabetes control and complications trial,” Diabetes, vol. 46, no. 11, pp. 1829–1839, 1997. View at Scopus
  10. M. Rema, G. Saravanan, R. Deepa, and V. Mohan, “Familial clustering of diabetic retinopathy in South Indian type 2 diabetic patients,” Diabetic Medicine, vol. 19, no. 11, pp. 910–916, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Hallman, J. C. Huber Jr., V. H. Gonzalez, B. E. K. Klein, R. Klein, and C. L. Hanis, “Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas,” Diabetes Care, vol. 28, no. 5, pp. 1163–1168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. H. Arar, B. I. Freedman, S. G. Adler et al., “Heritability of the severity of diabetic retinopathy: the FIND-Eye study,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 3839–3845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Hietala, C. Forsblom, P. Summanen, and P.-H. Groop, “Heritability of proliferative diabetic retinopathy,” Diabetes, vol. 57, no. 8, pp. 2176–2180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Engerman and T. S. Kern, “Experimental galactosemia produces diabetic-like retinopathy,” Diabetes, vol. 33, no. 1, pp. 97–100, 1984. View at Scopus
  15. T. S. Kern and R. L. Engerman, “Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats,” Current Eye Research, vol. 13, no. 12, pp. 863–867, 1994. View at Scopus
  16. T. S. Kern and R. L. Engerman, “Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin,” Diabetes, vol. 50, no. 7, pp. 1636–1642, 2001. View at Scopus
  17. M. Lorenzi and C. Gerhardinger, “Early cellular and molecular changes induced by diabetes in the retina,” Diabetologia, vol. 44, no. 7, pp. 791–804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. Warpeha and U. Chakravarthy, “Molecular genetics of microvascular disease in diabetic retinopathy,” Eye, vol. 17, no. 3, pp. 305–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Ray, M. Mishra, S. Ralph, I. Read, R. Davies, and P. Brenchley, “Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes,” Diabetes, vol. 53, no. 3, pp. 861–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Kumaramanickavel, V. L. Ramprasad, S. Sripriya, N. K. Upadyay, P. G. Paul, and T. Sharma, “Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients,” Journal of Diabetes and its Complications, vol. 16, no. 6, pp. 391–394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Awata, K. Inoue, S. Kurihara et al., “A common polymorphism in the 5-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes,” Diabetes, vol. 51, no. 5, pp. 1635–1639, 2002. View at Scopus
  22. Y. Wang, M. C. Y. Ng, S.-C. Lee et al., “Phenotypic heterogeneity and associations of two aldose reductase gene polymorphisms with nephropathy and retinopathy in type 2 diabetes,” Diabetes Care, vol. 26, no. 8, pp. 2410–2415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Suganthalakshmi, R. Anand, R. Kim et al., “Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy,” Molecular Vision, vol. 12, pp. 336–341, 2006. View at Scopus
  24. M. Beranek, K. Kankova, P. Benes et al., “Polymorphism R25P in the gene encoding transforming growth factor-beta (TGF-β1) is a newly identified risk factor for proliferative diabetic retinopathy,” American Journal of Medical Genetics, vol. 109, no. 4, pp. 278–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. C. Lam, J. K. Lee, C. C. Lu, C. H. Chu, M. J. Chuang, and M. C. Wang, “Role of endothelin in diabetic retinopathy,” Current Vascular Pharmacology, vol. 1, no. 3, pp. 243–250, 2003. View at Scopus
  26. K. G. Santos, B. Tschiedel, J. Schneider, K. Souto, and I. Roisenberg, “Diabetic retinopathy in Euro-Brazilian type 2 diabetic patients: relationship with polymorphisms in the aldose reductase, the plasminogen activator inhibitor-1 and the methylenetetrahydrofolate reductase genes,” Diabetes Research and Clinical Practice, vol. 61, no. 2, pp. 133–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Amano, S.-I. Yamagishi, Y. Koda et al., “Polymorphisms of sorbitol dehydrogenase (SDH) gene and susceptibility to diabetic retinopathy,” Medical Hypotheses, vol. 60, no. 4, pp. 550–551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Yoshioka, T. Yoshida, Y. Takakura et al., “Relation between polymorphisms G1704T and G82S of RAGE gene and diabetic retinopathy in Japanese type 2 diabetic patients,” Internal Medicine, vol. 44, no. 5, pp. 417–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. L. Hanis and D. M. Hallman, “Genetics of diabetic retinopathy,” Current Diabetes Reports, vol. 6, no. 2, pp. 155–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Sun, P. J. Oates, J. B. Coutcher, C. Gerhardinger, and M. Lorenzi, “A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy,” Diabetes, vol. 55, no. 10, pp. 2757–2762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Abhary, A. W. Hewitt, K. P. Burdon, and J. E. Craig, “A systematic meta-analysis of genetic association studies for diabetic retinopathy,” Diabetes, vol. 58, no. 9, pp. 2137–2147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” The New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Watanabe, K. Suzuma, I. Suzuma et al., “Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy,” American Journal of Ophthalmology, vol. 139, no. 3, pp. 476–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Hernández, R. Burgos, A. Cantón, J. García-Arumí, R. M. Segura, and R. Simó, “Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study,” Diabetes Care, vol. 24, no. 3, pp. 516–521, 2001. View at Scopus
  35. H. Funatsu, H. Yamashita, Y. Nakanishi, and S. Hori, “Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 86, no. 3, pp. 311–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Xia, L. P. Aiello, H. Ishii et al., “Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth,” Journal of Clinical Investigation, vol. 98, no. 9, pp. 2018–2026, 1996. View at Scopus
  38. L. P. Aiello, E. A. Pierce, E. D. Foley et al., “Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 23, pp. 10457–10461, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Qaum, Q. Xu, A. M. Joussen et al., “VEGF-initiated blood-retinal barrier breakdown in early diabetes,” Investigative Ophthalmology and Visual Science, vol. 42, no. 10, pp. 2408–2413, 2001. View at Scopus
  40. M. H. Yoo, H.-J. Hyun, J.-Y. Koh, and Y. H. Yoon, “Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo,” Investigative Ophthalmology and Visual Science, vol. 46, no. 12, pp. 4780–4787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Rigat, C. Hubert, F. Alhenc-Gelas, F. Cambien, P. Corvol, and F. Soubrier, “An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels,” Journal of Clinical Investigation, vol. 86, no. 4, pp. 1343–1346, 1990. View at Scopus
  42. J.-B. Zhou and J.-K. Yang, “Angiotensin-converting enzyme gene polymorphism is associated with proliferative diabetic retinopathy: a meta-analysis,” Acta Diabetologica. In press. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Hadjadj, L. Tarnow, C. Forsblom et al., “Association between angiotensin-converting enzyme gene polymorphisms and diabetic nephropathy: case-control, haplotype, and family-based study in three European populations,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1284–1291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. P. K. Ng, G. Placha, S. Choo, K.-S. Chia, J. H. Warram, and A. S. Krolewski, “A disease haplotype for advanced nephropathy in type 2 diabetes at the ACE locus,” Diabetes, vol. 55, no. 9, pp. 2660–2663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. J. Rogus, J. H. Warram, and A. S. Krolewski, “Genetic studies of late diabetic complications: the overlooked importance of diabetes duration before complication onset,” Diabetes, vol. 51, no. 6, pp. 1655–1662, 2002. View at Scopus
  46. S.-I. Araki, D. P. K. Ng, B. Krolewski et al., “Identification of a common risk haplotype for diabetic nephropathy at the protein kinase C-β1 (PRKCB1) gene locus,” Journal of the American Society of Nephrology, vol. 14, no. 8, pp. 2015–2024, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. H. Canani, L. A. Costa, D. Crispim et al., “The presence of allele D of angiotensin-converting enzyme polymorphism is associated with diabetic nephropathy in patients with less than 10 years duration of type 2 diabetes,” Diabetic Medicine, vol. 22, no. 9, pp. 1167–1172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Imperatore, R. L. Hanson, D. J. Pettitt, S. Kobes, P. H. Bennett, and W. C. Knowler, “Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with 2 diabetes,” Diabetes, vol. 47, no. 5, pp. 821–830, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. D. M. Hallman, E. Boerwinkle, V. H. Gonzalez, B. E. K. Klein, R. Klein, and C. L. Hanis, “A genome-wide linkage scan for diabetic retinopathy susceptibility genes in Mexican Americans with type 2 diabetes from Starr County, Texas,” Diabetes, vol. 56, no. 4, pp. 1167–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. H. C. Looker, R. G. Nelson, E. Chew et al., “Genome-wide linkage analyses to identify loci for diabetic retinopathy,” Diabetes, vol. 56, no. 4, pp. 1160–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. A. Manolio, L. D. Brooks, and F. S. Collins, “A HapMap harvest of insights into the genetics of common disease,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1590–1605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. D. P. K. Ng, “Whence forth after the GWAS wave for diabetic nephropathy?” in Nephrology Dialysis Transplantation, E. Krüger and K. Hahn, Eds., Nova Science Publishers, 2010.
  53. J. Jakobsdottir, M. B. Gorin, Y. P. Conley, R. E. Ferrell, and D. E. Weeks, “Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers,” PLoS Genetics, vol. 5, no. 2, Article ID e1000337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Q. Mohamed, M. C. Gillies, and T. Y. Wong, “Management of diabetic retinopathy: a systematic review,” Journal of the American Medical Association, vol. 298, no. 8, pp. 902–916, 2007. View at Publisher · View at Google Scholar · View at Scopus