About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2010 (2010), Article ID 465824, 11 pages
http://dx.doi.org/10.1155/2010/465824
Research Article

ERK5 Contributes to VEGF Alteration in Diabetic Retinopathy

Department of Pathology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada N6A 5A5

Received 15 December 2009; Revised 15 April 2010; Accepted 19 May 2010

Academic Editor: Susanne Mohr

Copyright © 2010 Yuexiu Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Aiello, T. W. Gardner, G. L. King et al., “Diabetic retinopathy,” Diabetes Care, vol. 21, no. 1, pp. 143–156, 1998. View at Scopus
  2. M. Boulton, D. Foreman, G. Williams, and D. McLeod, “VEGF localisation in diabetic retinopathy,” British Journal of Ophthalmology, vol. 82, no. 5, pp. 561–568, 1998. View at Scopus
  3. G. A. Lutty, D. S. McLeod, C. Merges, A. Diggs, and J. Plouét, “Localization of vascular endothelial growth factor in human retina and choroid,” Archives of Ophthalmology, vol. 114, no. 8, pp. 971–977, 1996. View at Scopus
  4. F. Malecaze, S. Clamens, V. Simorre-Pinatel et al., “Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy,” Archives of Ophthalmology, vol. 112, no. 11, pp. 1476–1482, 1994. View at Scopus
  5. M. Cukiernik, D. Hileeto, T. Evans, S. Mukherjee, D. Downey, and S. Chakrabarti, “Vascular endothelial growth factor in diabetes induced early retinal abnormalities,” Diabetes Research and Clinical Practice, vol. 65, no. 3, pp. 197–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H.-P. Hammes, J. Lin, R. G. Bretzel, M. Brownlee, and G. Breier, “Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat,” Diabetes, vol. 47, no. 3, pp. 401–406, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. L. P. Aiello, E. A. Pierce, E. D. Foley et al., “Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 23, pp. 10457–10461, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Chen, M. D. Apostolova, M. G. Cherian, and S. Chakrabarti, “Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells,” Laboratory Investigation, vol. 80, no. 8, pp. 1311–1321, 2000. View at Scopus
  9. R. Gao, B.-H. Zhu, S.-B. Tang, J.-F. Wang, and J. Ren, “Scutellarein inhibits hypoxia- and moderately-high glucose-induced proliferation and VEGF expression in human retinal endothelial cells,” Acta Pharmacologica Sinica, vol. 29, no. 6, pp. 707–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-X. Wu, X. Xia, K. Liu et al., “Effect of insulin on VEGF expression in bovine retinal microvascular endothelial cells exposed to normal or high glucose,” Zhonghua Yan Ke Za Zhi, vol. 44, no. 7, pp. 640–644, 2008. View at Scopus
  11. Z. A. Khan and S. Chakrabarti, “Cellular signaling and potential new treatment targets in diabetic retinopathy,” Experimental Diabetes Research, vol. 2007, Article ID 31867, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-D. Lee, R. J. Ulevitch, and J. Han, “Primary structure of BMK1: a new mammalian MAP kinase,” Biochemical and Biophysical Research Communications, vol. 213, no. 2, pp. 715–724, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Zhou, Z. Q. Bao, and J. E. Dixon, “Components of a new human protein kinase signal transduction pathway,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12665–12669, 1995. View at Scopus
  14. C. Yan, M. Takahashi, M. Okuda, J.-D. Lee, and B. C. Berk, “Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells: dependence on tyrosine kinases and intracellular calcium,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 143–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Hayashi, S.-W. Kim, K. Imanaka-Yoshida et al., “Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure,” Journal of Clinical Investigation, vol. 113, no. 8, pp. 1138–1148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Pi, C. Yan, and B. C. Berk, “Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis,” Circulation Research, vol. 94, no. 3, pp. 362–369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Spiering, M. Schmolke, N. Ohnesorge et al., “MEK5/ERK5 signaling modulates endothelial cell migration and focal contact turnover,” Journal of Biological Chemistry, vol. 284, no. 37, pp. 24972–24980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Pi, G. Garin, L. Xie et al., “BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor 1α,” Circulation Research, vol. 96, no. 11, pp. 1145–1151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. Sohn, B. K. Sarvis, D. Cado, and A. Winoto, “ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 43344–43351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Sohn, D. Li, L. K. Lee, and A. Winoto, “Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase,” Molecular and Cellular Biology, vol. 25, no. 19, pp. 8553–8566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bhattacharya, S. Senbanerjee, Z. Lin et al., “Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2,” Journal of Biological Chemistry, vol. 280, no. 32, pp. 28848–28851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Sako, S. Fukuhara, T. Minami et al., “Angiopoietin-1 induces Krüppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5592–5601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Boon, J. O. Fledderus, O. L. Volger et al., “KLF2 suppresses TGF-β signaling in endothelium through induction of Smad7 and inhibition of AP-1,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 3, pp. 532–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Dekker, R. A. Boon, M. G. Rondaij et al., “KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium,” Blood, vol. 107, no. 11, pp. 4354–4363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zuo, S.-K. Shields, and C. Chakraborty, “Enhanced intrinsic migration of aggressive breast cancer cells by inhibition of Rac1 GTPase,” Biochemical and Biophysical Research Communications, vol. 351, no. 2, pp. 361–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Chen, Z. A. Khan, M. Cukiernik, and S. Chakrabarti, “Differential activation of NF-κB and AP-1 in increased fibronectin synthesis in target organs of diabetic complications,” American Journal of Physiology, vol. 284, no. 6, pp. E1089–E1097, 2003. View at Scopus
  27. Z. A. Khan, M. Cukiernik, J. R. Gonder, and S. Chakrabarti, “Oncofetal fibronectin in diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 45, no. 1, pp. 287–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Kaur, S. Chen, X. Xin, J. Chiu, Z. A. Khan, and S. Chakrabarti, “Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300,” Diabetes, vol. 55, no. 11, pp. 3104–3111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Xu, J. Chiu, B. Feng, S. Chen, and S. Chakrabarti, “PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 5, pp. 404–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Morimoto, K. Kondoh, S. Nishimoto, K. Terasawa, and E. Nishida, “Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation,” Journal of Biological Chemistry, vol. 282, no. 49, pp. 35449–35456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wang and C. Tournier, “Regulation of cellular functions by the ERK5 signalling pathway,” Cellular Signalling, vol. 18, no. 6, pp. 753–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Pe'er, D. Shweiki, A. Itin, I. Hemo, H. Gnessin, and E. Keshet, “Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases,” Laboratory Investigation, vol. 72, no. 6, pp. 638–645, 1995. View at Scopus
  33. D. Ray, M. Mishra, S. Ralph, I. Read, R. Davies, and P. Brenchley, “Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes,” Diabetes, vol. 53, no. 3, pp. 861–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. P. E. Depeille, Y. Ding, J. L. Bromberg-White, and N. S. Duesbery, “MKK signaling and vascularization,” Oncogene, vol. 26, no. 9, pp. 1290–1296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Milanini, F. Viñals, J. Pouysségur, and G. Pagès, “p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts,” Journal of Biological Chemistry, vol. 273, no. 29, pp. 18165–18172, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Pagès, E. Berra, J. Milanini, A. P. Levy, and J. Pouysségur, “Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability,” Journal of Biological Chemistry, vol. 275, no. 34, pp. 26484–26491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Guma, J. Rius, K. X. Duong-Polk, G. G. Haddad, J. D. Lindsey, and M. Karin, “Genetic and pharmacological inhibition of JNK ameliorates hypoxia-induced retinopathy through interference with VEGF expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8760–8765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Chen, Y. Hu, T. Zhou et al., “Activation of the wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models,” American Journal of Pathology, vol. 175, no. 6, pp. 2676–2685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. G. Kasler, J. Victoria, O. Duramad, and A. Winoto, “ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain,” Molecular and Cellular Biology, vol. 20, no. 22, pp. 8382–8389, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Shishido, C.-H. Woo, B. Ding et al., “Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction,” Circulation Research, vol. 102, no. 11, pp. 1416–1425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Kato, M. Zhao, A. Morikawa et al., “Big mitogen-activated kinase regulates multiple members of the MEF2 protein family,” Journal of Biological Chemistry, vol. 275, no. 24, pp. 18534–18540, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Kawanami, G. H. Mahabeleshwar, Z. Lin et al., “Kruppel-like factor 2 inhibits hypoxia-inducible factor 1α expression and function in the endothelium,” Journal of Biological Chemistry, vol. 284, no. 31, pp. 20522–20530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. K. Van den Enden, J. R. Nyengaard, E. Ostrow, J. H. Burgan, and J. R. Williamson, “Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism: implications for diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 36, no. 8, pp. 1675–1685, 1995. View at Scopus
  44. J. R. Williamson, K. Chang, M. Frangos et al., “Hyperglycemic pseudohypoxia and diabetic complications,” Diabetes, vol. 42, no. 6, pp. 801–813, 1993. View at Scopus
  45. W. Lui, A. Schoenkerman, and W. L. Lowe Jr., “Activation of members of the mitogen-activated protein kinase family by glucose in endothelial cells,” American Journal of Physiology, vol. 279, no. 4, pp. E782–E790, 2000. View at Scopus
  46. H. Wu, X. Xia, C. Jiang et al., “High glucose attenuates insulin-induced VEGF expression in bovine retinal microvascular endothelial cells,” Eye, vol. 24, no. 1, pp. 145–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Hoshi, K.-I. Nomoto, J. Kuromitsu, S. Tomari, and M. Nagata, “High glucose induced VEGF expression via PKC and ERK in glomerular podocytes,” Biochemical and Biophysical Research Communications, vol. 290, no. 1, pp. 177–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kamakura, T. Moriguchi, and E. Nishida, “Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26563–26571, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Kato, R. I. Tapping, S. Huang, M. H. Watson, R. J. Ulevitch, and J.-D. Lee, “Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor,” Nature, vol. 395, no. 6703, pp. 713–716, 1998. View at Publisher · View at Google Scholar · View at Scopus