About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2010 (2010), Article ID 521204, 6 pages
http://dx.doi.org/10.1155/2010/521204
Research Article

Aldo-Keto Reductases in the Eye

1Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
2Program in Genetics, Molecular, and Cell Biology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA
3Biochemistry Division, National Institute of Nutrition, Hyderabad-500 604, India
4Department of Ophthalmology, Rocky Mountain Lions Eye Institute, University of Colorado Denver, Aurora, CO 80111, USA

Received 7 February 2010; Accepted 15 March 2010

Academic Editor: Ram H. Nagaraj

Copyright © 2010 Shun Ping Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Aiello, T. W. Gardner, G. L. King, et al., “Diabetic retinopathy,” Diabetes Care, vol. 21, pp. 143–156, 1998.
  2. P. E. Stanga, S. R. Boyd, and A. M. P. Hamilton, “Ocular manifestations of diabetes mellitus,” Current Opinion in Ophthalmology, vol. 10, no. 6, pp. 483–489, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. S. F. Yan, R. Ramasamy, and A. M. Schmidt, “The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease,” Expert Reviews in Molecular Medicine, vol. 11, article e9, 2009.
  4. N. Das Evcimen and G. L. King, “The role of protein kinase C activation and the vascular complications of diabetes,” Pharmacological Research, vol. 55, no. 6, pp. 498–510, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. H. Kinoshita and C. Nishimura, “The involvement of aldose reductase in diabetic complications,” Diabetes-Metabolism Reviews, vol. 4, no. 4, pp. 323–337, 1988. View at Scopus
  6. M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Y. W. Lee, S. K. Chung, and S. S. M. Chung, “Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2780–2784, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Hyndman and T. G. Flynn, “Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family,” Biochimica et Biophysica Acta, vol. 1399, no. 2-3, pp. 198–202, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Cao, S. T. Fan, and S. S. M. Chung, “Identification and characterization of a novel human aldose reductase-like gene,” Journal of Biological Chemistry, vol. 273, no. 19, pp. 11429–11435, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Crosas, D. J. Hyndman, O. Gallego, et al., “Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism,” Biochemical Journal, vol. 373, no. 3, pp. 973–979, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. A. Vinores, P. A. Campochiaro, E. H. Williams, E. E. May, W. R. Green, and R. L. Sorenson, “Aldose reductase expression in human diabetic retina and retinal pigment epithelium,” Diabetes, vol. 37, no. 12, pp. 1658–1664, 1988. View at Scopus
  12. Y. Akagi, Y. Yajima, and P. F. Kador, “Localization of aldose reductase in the human eye,” Diabetes, vol. 33, no. 6, pp. 562–566, 1984. View at Scopus
  13. I. Tarle, B. W. Borhani, D. K. Wilson, F. A. Quiocho, and J. M. Petrash, “Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110,” Journal of Biological Chemistry, vol. 268, no. 34, pp. 25687–25693, 1993. View at Scopus
  14. L. W. Reneker, Q. Chen, A. Bloch, L. Xie, G. Schuster, and P. A. Overbeek, “Chick δ1-crystallin enhancer influences mouse αA-crystallin promoter activity in transgenic mice,” Investigative Ophthalmology and Visual Science, vol. 45, no. 11, pp. 4083–4090, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. M. Joussen, V. Poulaki, M. L. Le, et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. C.-D. Hsu, S. Kymes, and J. M. Petrash, “A transgenic mouse model for human autosomal dominant cataract,” Investigative Ophthalmology and Visual Science, vol. 47, no. 5, pp. 2036–2044, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. D. Varma, S. S. Shocket, and R. D. Richards, “Implications of aldose reductase in cataracts in human diabetes,” Investigative Ophthalmology and Visual Science, vol. 18, no. 3, pp. 237–241, 1979. View at Scopus