About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2010 (2010), Article ID 608751, 8 pages
http://dx.doi.org/10.1155/2010/608751
Review Article

Diabetic Cataract—Pathogenesis, Epidemiology and Treatment

Department of Ophthalmology and Optometry, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria

Received 11 December 2009; Accepted 2 April 2010

Academic Editor: Mark Petrash

Copyright © 2010 Andreas Pollreisz and Ursula Schmidt-Erfurth. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Klein and B. E. K. Klein, “Diabetic eye disease,” The Lancet, vol. 350, no. 9072, pp. 197–204, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. P.-J. Guillausseau, P. Massin, M.-A. Charles, et al., “Glycaemic control and development of retinopathy in type 2 diabetes mellitus: a longitudinal study,” Diabetic Medicine, vol. 15, no. 2, pp. 151–155, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. I. M. Stratton, E. M. Kohner, S. J. Aldington, et al., “UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis,” Diabetologia, vol. 44, no. 2, pp. 156–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Harding, M. Egerton, R. van Heyningen, and R. S. Harding, “Diabetes, glaucoma, sex, and cataract: analysis of combined data from two case control studies,” British Journal of Ophthalmology, vol. 77, no. 1, pp. 2–6, 1993. View at Scopus
  6. H. A. Kahn, H. M. Leibowitz, J. P. Ganley, et al., “The Framingham eye study. II. Association of ophthalmic pathology with single variables previously measured in the Framingham heart study,” American Journal of Epidemiology, vol. 106, no. 1, pp. 33–41, 1977.
  7. P. E. Stanga, S. R. Boyd, and A. M. P. Hamilton, “Ocular manifestations of diabetes mellitus,” Current Opinion in Ophthalmology, vol. 10, no. 6, pp. 483–489, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Tabin, M. Chen, and L. Espandar, “Cataract surgery for the developing world,” Current Opinion in Ophthalmology, vol. 19, no. 1, pp. 55–59, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. H. Kinoshita, “Mechanisms initiating cataract formation. Proctor lecture,” Investigative Ophthalmology, vol. 13, no. 10, pp. 713–724, 1974.
  10. J. H. Kinoshita, S. Fukushi, P. Kador, and L. O. Merola, “Aldose reductase in diabetic complications of the eye,” Metabolism, vol. 28, no. 4, pp. 462–469, 1979. View at Scopus
  11. J. H. Kinoshita, “Cataracts in galactosemia. The Jonas S. Friedenwald memorial lecture,” Investigative Ophthalmology, vol. 4, no. 5, pp. 786–799, 1965.
  12. P. F. Kador and J. H. Kinoshita, “Diabetic and galactosaemic cataracts,” Ciba Foundation Symposium, vol. 106, pp. 110–131, 1984. View at Scopus
  13. S. K. Srivastava, K. V. Ramana, and A. Bhatnagar, “Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options,” Endocrine Reviews, vol. 26, no. 3, pp. 380–392, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Takamura, Y. Sugimoto, E. Kubo, Y. Takahashi, and Y. Akagi, “Immunohistochemical study of apoptosis of lens epithelial cells in human and diabetic rat cataracts,” Japanese Journal of Ophthalmology, vol. 45, no. 6, pp. 559–563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. W.-C. Li, J. R. Kuszak, K. Dunn, et al., “Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals,” Journal of Cell Biology, vol. 130, no. 1, pp. 169–181, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Huang, Z. Jiang, S. Teng, et al., “Synergism between phospholipase D2 and sorbitol accumulation in diabetic cataract formation through modulation of Na,K-ATPase activity and osmotic stress,” Experimental Eye Research, vol. 83, no. 4, pp. 939–948, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. E. Wilson Jr., A. V. Levin, R. H. Trivedi, et al., “Cataract associated with type-1 diabetes mellitus in the pediatric population,” Journal of AAPOS, vol. 11, no. 2, pp. 162–165, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. B. Datiles III and P. F. Kador, “Type I diabetic cataract,” Archives of Ophthalmology, vol. 117, no. 2, pp. 284–285, 1999. View at Scopus
  19. N. Oishi, S. Morikubo, Y. Takamura, et al., “Correlation between adult diabetic cataracts and red blood cell aldose reductase levels,” Investigative Ophthalmology and Visual Science, vol. 47, no. 5, pp. 2061–2064, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Y. Kumamoto, Y. Takamura, E. Kubo, S. Tsuzuki, and Y. Akagi, “Epithelial cell density in cataractous lenses of patients with diabetes: association with erythrocyte aldose reductase,” Experimental Eye Research, vol. 85, no. 3, pp. 393–399, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. S. M. Chung, E. C. M. Ho, K. S. L. Lam, and S. K. Chung, “Contribution of polyol pathway to diabetes-induced oxidative stress,” Journal of the American Society of Nephrology, vol. 14, no. 3, pp. S233–S236, 2003. View at Scopus
  22. M. L. Mulhern, C. J. Madson, A. Danford, K. Ikesugi, P. F. Kador, and T. Shinohara, “The unfolded protein response in lens epithelial cells from galactosemic rat lenses,” Investigative Ophthalmology and Visual Science, vol. 47, no. 9, pp. 3951–3959, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. J. Bron, J. Sparrow, N. A. P. Brown, J. J. Harding, and R. Blakytny, “The lens in diabetes,” Eye, vol. 7, no. 2, pp. 260–275, 1993. View at Scopus
  24. K. Örnek, F. Karel, and Z. Büyükbingöl, “May nitric oxide molecule have a role in the pathogenesis of human cataract?” Experimental Eye Research, vol. 76, no. 1, pp. 23–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S.-H. Chiou, C.-J. Chang, C.-K. Chou, W.-M. Hsu, J.-H. Liu, and C.-H. Chiang, “Increased nitric oxide levels in aqueous humor of diabetic patients with neovascular glaucoma,” Diabetes Care, vol. 22, no. 5, pp. 861–862, 1999. View at Scopus
  26. A. W. Stitt, “The Maillard reaction in eye diseases,” Annals of the New York Academy of Sciences, vol. 1043, pp. 582–597, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S.-B. Hong, K.-W. Lee, J. T. Handa, and C.-K. Joo, “Effect of advanced glycation end products on lens epithelial cells in vitro,” Biochemical and Biophysical Research Communications, vol. 275, no. 1, pp. 53–59, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. T. Ookawara, N. Kawamura, Y. Kitagawa, and N. Taniguchi, “Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species,” Journal of Biological Chemistry, vol. 267, no. 26, pp. 18505–18510, 1992. View at Scopus
  29. A. Behndig, K. Karlsson, B. O. Johansson, T. Brännström, and S. L. Marklund, “Superoxide dismutase isoenzymes in the normal and diseased human cornea,” Investigative Ophthalmology and Visual Science, vol. 42, no. 10, pp. 2293–2296, 2001. View at Scopus
  30. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Scopus
  31. A. Behndig, K. Karlsson, A. G. Reaume, M.-L. Sentman, and S. L. Marklund, “In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase,” Free Radical Biology and Medicine, vol. 31, no. 6, pp. 738–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Olofsson, S. L. Marklund, K. Karlsson, T. Brännström, and A. Behndig, “In vitro glucose-induced cataract in copper-zinc superoxide dismutase null mice,” Experimental Eye Research, vol. 81, no. 6, pp. 639–646, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. E. M. Olofsson, S. L. Marklund, and A. Behndig, “Enhanced diabetes-induced cataract in copper-zinc superoxide dismutase-null mice,” Investigative Ophthalmology & Visual Science, vol. 50, no. 6, pp. 2913–2918, 2009.
  34. B. E. K. Klein, R. Klein, and S. E. Moss, “Prevalence of cataracts in a population-based study of persons with diabetes mellitus,” Ophthalmology, vol. 92, no. 9, pp. 1191–1196, 1985. View at Scopus
  35. N. V. Nielsen and T. Vinding, “The prevalence of cataract in insulin-dependent and non-insulin-dependent-diabetes mellitus,” Acta Ophthalmologica, vol. 62, no. 4, pp. 595–602, 1984. View at Scopus
  36. W. E. Benson, “Cataract surgery and diabetic retinopathy,” Current Opinion in Ophthalmology, vol. 3, no. 3, pp. 396–400, 1992.
  37. F. Ederer, R. Hiller, and H. R. Taylor, “Senile lens changes and diabetes in two population studies,” American Journal of Ophthalmology, vol. 91, no. 3, pp. 381–395, 1981.
  38. B. E. K. Klein, R. Klein, and S. E. Moss, “Incidence of cataract surgery in the Wisconsin epidemiologic study of diabetic retinopathy,” American Journal of Ophthalmology, vol. 119, no. 3, pp. 295–300, 1995. View at Scopus
  39. B. E. K. Klein, R. Klein, and K. E. Lee, “Diabetes, cardiovascular disease, selected cardiovascular disease risk factors, and the 5-year incidence of age-related cataract and progression of lens opacities: the Beaver Dam Eye Study,” American Journal of Ophthalmology, vol. 126, no. 6, pp. 782–790, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. B. E. Klein, R. Klein, Q. Wang, and S. E. Moss, “Older-onset diabetes and lens opacities. The Beaver Dam Eye Study,” Ophthalmic Epidemiology, vol. 2, no. 1, pp. 49–55, 1995. View at Scopus
  41. N. Rowe, P. Mitchell, R. G. Cumming, and J. J. Wans, “Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study,” Ophthalmic Epidemiology, vol. 7, no. 2, pp. 103–114, 2000. View at Scopus
  42. S. Saxena, P. Mitchell, and E. Rochtchina, “Five-year incidence of cataract in older persons with diabetes and pre-diabetes,” Ophthalmic Epidemiology, vol. 11, no. 4, pp. 271–277, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. B. N. Mukesh, A. Le, P. N. Dimitrov, S. Ahmed, H. R. Taylor, and C. A. McCarty, “Development of cataract and associated risk factors: the Visual Impairment Project,” Archives of Ophthalmology, vol. 124, no. 1, pp. 79–85, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. C. Leske, S.-Y. Wu, A. Hennis, et al., “Diabetes, hypertension, and central obesity as cataract risk factors in a black population: the Barbados Eye Study,” Ophthalmology, vol. 106, no. 1, pp. 35–41, 1999. View at Scopus
  45. J. L. Goldstein, “How a jolt and a bolt in a dentist's chair revolutionized cataract surgery,” Nature Medicine, vol. 10, no. 10, pp. 1032–1033, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. A. Sadiq, A. Chatterjee, and S. A. Vernon, “Progression of diabetic retinopathy and rubeotic glaucoma following cataract surgery,” Eye, vol. 9, no. 6, pp. 728–738, 1995. View at Scopus
  47. P. G. Tranos, S. S. Wickremasinghe, N. T. Stangos, F. Topouzis, I. Tsinopoulos, and C. E. Pavesio, “Macular edema,” Survey of Ophthalmology, vol. 49, no. 5, pp. 470–490, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. P. G. Hykin, R. M. C. Gregson, J. D. Stevens, and P. A. M. Hamilton, “Extracapsular cataract extraction in proliferative diabetic retinopathy,” Ophthalmology, vol. 100, no. 3, pp. 394–399, 1993. View at Scopus
  49. E. Y. Chew, W. E. Benson, N. A. Remaley, et al., “Results after lens extraction in patients with diabetic retinopathy: early treatment diabetic retinopathy study report number 25,” Archives of Ophthalmology, vol. 117, no. 12, pp. 1600–1606, 1999. View at Scopus
  50. T. Oshika, S. Kato, and H. Funatsu, “Quantitative assessment of aqueous flare intensity in diabetes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 227, no. 6, pp. 518–520, 1989. View at Scopus
  51. T. Oshika, K. Yoshimura, and N. Miyata, “Postsurgical inflammation after phacoemulsification and extracapsular extraction with soft or conventional intraocular lens implantation,” Journal of Cataract and Refractive Surgery, vol. 18, no. 4, pp. 356–361, 1992. View at Scopus
  52. M. V. Pande, D. J. Spalton, M. G. Kerr-Muir, and J. Marshall, “Postoperative inflammatory response to phacoemulsification and extracapsular cataract surgery: aqueous flare and cells,” Journal of Cataract and Refractive Surgery, vol. 22, supplement 1, pp. 770–774, 1996. View at Scopus
  53. Y. Liu, L. Luo, M. He, and X. Liu, “Disorders of the blood-aqueous barrier after phacoemulsification in diabetic patients,” Eye, vol. 18, no. 9, pp. 900–904, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. K. Schmier, M. T. Halpern, D. W. Covert, and G. P. Matthews, “Evaluation of costs for cystoid macular edema among patients after cataract surgery,” Retina, vol. 27, no. 5, pp. 621–628, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. Zaczek, G. Olivestedt, and C. Zetterström, “Visual outcome after phacoemulsification and IOL implantation in diabetic patients,” British Journal of Ophthalmology, vol. 83, no. 9, pp. 1036–1041, 1999. View at Scopus
  56. R. A. Mittra, J. L. Borrillo, S. Dev, W. F. Mieler, and S. B. Koenig, “Retinopathy progression and visual outcomes after phacoemulsification in patients with diabetes mellitus,” Archives of Ophthalmology, vol. 118, no. 7, pp. 912–917, 2000. View at Scopus
  57. S. Kato, Y. Fukada, S. Hori, Y. Tanaka, and T. Oshika, “Influence of phacoemulsification and intraocular lens implantation on the course of diabetic retinopathy,” Journal of Cataract and Refractive Surgery, vol. 25, no. 6, pp. 788–793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Hong, P. Mitchell, T. de Loryn, E. Rochtchina, S. Cugati, and J. J. Wang, “Development and progression of diabetic retinopathy 12 months after phacoemulsification cataract surgery,” Ophthalmology, vol. 116, no. 8, pp. 1510–1514, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. L. Borrillo, R. A. Mittra, S. Dev, et al., “Retinopathy progression and visual outcomes after phacoemulsification in patients with diabetes mellitus,” Transactions of the American Ophthalmological Society, vol. 97, pp. 435–449, 1999.
  60. H. Funatsu, H. Yamashita, H. Noma, E. Shimizu, T. Mimura, and S. Hori, “Prediction of macular edema exacerbation after phacoemulsification in patients with nonproliferative diabetic retinopathy,” Journal of Cataract and Refractive Surgery, vol. 28, no. 8, pp. 1355–1363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Krepler, R. Biowski, S. Schrey, K. Jandrasits, and A. Wedrich, “Cataract surgery in patients with diabetic retinopathy: visual outcome, progression of diabetic retinopathy, and incidence of diabetic macular oedema,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 9, pp. 735–738, 2002. View at Scopus
  62. D. Squirrell, R. Bhola, J. Bush, S. Winder, and J. F. Talbot, “A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes,” British Journal of Ophthalmology, vol. 86, no. 5, pp. 565–571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. S.-B. Liao and W.-C. Ku, “Progression of diabetic retinopathy after phacoemulsification in diabetic patients: a three-year analysis,” Chang Gung Medical Journal, vol. 26, no. 11, pp. 829–834, 2003. View at Scopus
  64. S. J. Kim, R. Equi, and N. M. Bressler, “Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography,” Ophthalmology, vol. 114, no. 5, pp. 881–889, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. S. D. Varma, A. Mizuno, and J. H. Kinoshita, “Diabetic cataracts and flavonoids,” Science, vol. 195, no. 4274, pp. 205–206, 1977. View at Scopus
  66. P. M. Leuenberger, “Diabetic cataract and flavonoids (first results),” Klinische Monatsblatter fur Augenheilkunde, vol. 172, no. 4, pp. 460–462, 1978.
  67. R. Huang, F. Shi, T. Lei, Y. Song, C. L. Hughes, and G. Liu, “Effect of the isoflavone genistein against galactose-induced cataracts in rats,” Experimental Biology and Medicine, vol. 232, no. 1, pp. 118–125, 2007. View at Scopus
  68. S. D. Varma, S. S. Shocket, and R. D. Richards, “Implications of aldose reductase in cataracts in human diabetes,” Investigative Ophthalmology and Visual Science, vol. 18, no. 3, pp. 237–241, 1979. View at Scopus
  69. M. S. Moghaddam, P. A. Kumar, G. B. Reddy, and V. S. Ghole, “Effect of Diabecon on sugar-induced lens opacity in organ culture: mechanism of action,” Journal of Ethnopharmacology, vol. 97, no. 2, pp. 397–403, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. N. Halder, S. Joshi, and S. K. Gupta, “Lens aldose reductase inhibiting potential of some indigenous plants,” Journal of Ethnopharmacology, vol. 86, no. 1, pp. 113–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. P. F. Kador, G. Sun, V. K. Rait, L. Rodriguez, Y. Ma, and K. Sugiyama, “Intrinsic inhibition of aldose reductase,” Journal of Ocular Pharmacology and Therapeutics, vol. 17, no. 4, pp. 373–381, 2001. View at Scopus
  72. M. Jacobson, Y. R. Sharma, E. Cotlier, and J. Den Hollander, “Diabetic complications in lens and nerve and their prevention by sulindac or sorbinil: two novel aldose reductase inhibitors,” Investigative Ophthalmology and Visual Science, vol. 24, no. 10, pp. 1426–1429, 1983. View at Scopus
  73. Y. R. Sharma, R. B. Vajpayee, R. Bhatnagar, et al., “Topical sulindac therapy in diabetic senile cataracts: cataract—IV,” Indian Journal of Ophthalmology, vol. 37, no. 3, pp. 127–133, 1989. View at Scopus
  74. S.K. Gupta and S. Joshi, “Relationship between aldose reductase inhibiting activity and anti-cataract action of various non-steroidal anti-inflammatory drugs,” Developments in Ophthalmology, vol. 21, pp. 151–156, 1991. View at Scopus
  75. E. Cotlier, “Aspirin effect on cataract formation in patients with rheumatoid arthritis alone or combined to diabetes,” International Ophthalmology, vol. 3, no. 3, pp. 173–177, 1981. View at Scopus
  76. S. K. Gupta and S. Joshi, “Naproxen: an aldose reductase inhibitor and potential anti-cataract agent,” Developments in Ophthalmology, vol. 21, pp. 170–178, 1991. View at Scopus
  77. T. Matsumoto, Y. Ono, A. Kuromiya, K. Toyosawa, Y. Ueda, and V. Bril, “Long-term treatment with ranirestat (AS-3201), a potent aldose reductase inhibitor, suppresses diabetic neuropathy and cataract formation in rats,” Journal of Pharmacological Sciences, vol. 107, no. 3, pp. 340–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. V. R. Drel, P. Pacher, T. K. Ali, et al., “Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis,” International Journal of Molecular Medicine, vol. 21, no. 6, pp. 667–676, 2008. View at Scopus
  79. P. F. Kador, D. Betts, M. Wyman, K. Blessing, and J. Randazzo, “Effects of topical administration of an aldose reductase inhibitor on cataract formation in dogs fed a diet high in galactose,” American Journal of Veterinary Research, vol. 67, no. 10, pp. 1783–1787, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. L. T. Chylack Jr., H. F. Henriques III, H. M. Cheng, and W. H. Tung, “Efficacy of alrestatin, an aldose reductase inhibitor, in human diabetic and nondiabetic lenses,” Ophthalmology, vol. 86, no. 9, pp. 1579–1585, 1979. View at Scopus
  81. B. W. Griffin, L. G. McNatt, M. L. Chandler, and B. M. York, “Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats,” Metabolism, vol. 36, no. 5, pp. 486–490, 1987. View at Scopus
  82. D. Stribling, D. J. Mirrlees, H. E. Harrison, and D. C. N. Earl, “Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat,” Metabolism, vol. 34, no. 4, pp. 336–344, 1985. View at Scopus
  83. K. Kato, K. Nakayama, M. Mizota, I. Miwa, and J. Okuda, “Properties of novel aldose reductase inhibitors, M16209 and M16287, in comparison with known inhibitors, ONO-2235 and sorbinil,” Chemical and Pharmaceutical Bulletin, vol. 39, no. 6, pp. 1540–1545, 1991. View at Scopus
  84. S. Ao, Y. Shingu, C. Kikuchi, et al., “Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat,” Metabolism, vol. 40, no. 1, pp. 77–87, 1991. View at Publisher · View at Google Scholar · View at Scopus
  85. W. G. Robison Jr., N. M. Laver, J. Jacot, et al., “Diabetic-like retinopathy ameliorated with the aldose reductase inhibitor WAY-121,509,” Investigative Ophthalmology and Visual Science, vol. 37, no. 6, pp. 1149–1156, 1996. View at Scopus
  86. M. C. van Zandt, M. L. Jones, D. E. Gunn, et al., “Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications,” Journal of Medicinal Chemistry, vol. 48, no. 9, pp. 3141–3152, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. M. Kojima, L. Sun, I. Hata, Y. Sakamoto, H. Sasaki, and K. Sasaki, “Efficacy of α-lipoic acid against diabetic cataract in rat,” Japanese Journal of Ophthalmology, vol. 51, no. 1, pp. 10–13, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. Yoshida, H. Kimura, K. Kyuki, and M. Ito, “Combined effect of vitamin E and insulin on cataracts of diabetic rats fed a high cholesterol diet,” Biological and Pharmaceutical Bulletin, vol. 27, no. 3, pp. 338–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Zhao, P. S. Devamanoharan, M. Henein, A. H. Ali, and S. D. Varma, “Diabetes-induced biochemical changes in rat lens: attenuation of cataractogenesis by pyruvate,” Diabetes, Obesity and Metabolism, vol. 2, no. 3, pp. 165–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. S. D. Varma, K. R. Hegde, and S. Kovtun, “Attenuation and delay of diabetic cataracts by antioxidants: effectiveness of pyruvate after onset of cataract,” Ophthalmologica, vol. 219, no. 5, pp. 309–315, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. K. R. Hegde and S. D. Varma, “Morphogenetic and apoptotic changes in diabetic cataract: prevention by pyruvate,” Molecular and Cellular Biochemistry, vol. 262, no. 1-2, pp. 233–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. C. H. Meyer and W. Sekundo, “Nutritional supplementation to prevent cataract formation,” Developments in Ophthalmology, vol. 38, pp. 103–119, 2005. View at Scopus
  93. K. Miyake and N. Ibaraki, “Prostaglandins and cystoid macular edema,” Survey of Ophthalmology, vol. 47, no. 4, pp. S203–S218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. A. J. Flach, “The incidence, pathogenesis and treatment of cystoid macular edema following cataract surgery,” Transactions of the American Ophthalmological Society, vol. 96, pp. 557–634, 1998. View at Scopus
  95. K. Miyake, K. Masuda, S. Shirato, et al., “Comparison of diclofenac and fluorometholone in preventing cystoid macular edema after small incision cataract surgery: a multicentered prospective trial,” Japanese Journal of Ophthalmology, vol. 44, no. 1, pp. 58–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. T. P. O'Brien, “Emerging guidelines for use of NSAID therapy to optimize cataract surgery patient care,” Current Medical Research and Opinion, vol. 21, no. 7, pp. 1131–1137, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. L. Rossetti, J. Chaudhuri, and K. Dickersin, “Medical prophylaxis and treatment of cystoid macular edema after cataract surgery: the results of a meta-analysis,” Ophthalmology, vol. 105, no. 3, pp. 397–405, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. J. S. Heier, T. M. Topping, W. Baumann, M. S. Dirks, and S. Chern, “Ketorolac versus prednisolone versus combination therapy in the treatment of acute pseudophakic cystoid macular edema,” Ophthalmology, vol. 107, no. 11, pp. 2034–2038, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. A. J. Flach, C. J. Lavelle, K. W. Olander, J. A. Retzlaff, and L. W. Sorenson, “The effect of ketorolac tromethamine solution 0.5% in reducing postoperative inflammation after cataract extraction and intraocular lens implantation,” Ophthalmology, vol. 95, no. 9, pp. 1279–1284, 1988. View at Scopus
  100. T.-L. Ke, G. Graff, J. M. Spellman, and J. M. Yanni, “Nepafenac, a unique nonsteroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: II. In vitro bioactivation and permeation of external ocular barriers,” Inflammation, vol. 24, no. 4, pp. 371–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. E. J. Wolf, A. Braunstein, C. Shih, and R. E. Braunstein, “Incidence of visually significant pseudophakic macular edema after uneventful phacoemulsification in patients treated with nepafenac,” Journal of Cataract and Refractive Surgery, vol. 33, no. 9, pp. 1546–1549, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus