About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2012 (2012), Article ID 812034, 7 pages
http://dx.doi.org/10.1155/2012/812034
Clinical Study

Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease

1Boston Foundation for Sight, 464 Hillside Avenue, Suite 205, Needham, MA 02494, USA
2Center for Ophthalmic Optics and Lasers, Casey Eye Institute, Oregon University of Health & Science, Portland, OR, USA
3Department of Ophthalmology, Harvard Medical School, Boston, MA, USA

Received 14 August 2012; Accepted 19 November 2012

Academic Editor: Norma Allemann

Copyright © 2012 Hong-Gam T. Le et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. D. Schein, P. Rosenthal, and C. Ducharme, “A gas-permeable scleral contact lens for visual rehabilitation,” American Journal of Ophthalmology, vol. 109, no. 3, pp. 318–322, 1990. View at Scopus
  2. T. Romero-Rangel, P. Stavrou, J. Cotter, P. Rosenthal, S. Baltatzis, and C. S. Foster, “Gas-permeable scleral contact lens therapy in ocular surface disease,” American Journal of Ophthalmology, vol. 130, no. 1, pp. 25–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Baran, J. A. Bradley, F. Alipour, P. Rosenthal, H. G. Le, and D. S. Jacobs, “PROSE treatment of corneal ectasia,” Contact Lens & Anterior Eye, vol. 35, pp. 222–227, 2012.
  4. W. B. Stason, M. Razavi, D. S. Jacobs et al., “Clinical benefits of the Boston ocular surface prosthesis,” American Journal of Ophthalmology, vol. 149, no. 1, pp. 54–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Shepard, M. Razavi, W. B. Stason et al., “Economic appraisal of the Boston ocular surface prosthesis,” American Journal of Ophthalmology, vol. 148, no. 6, pp. 860–868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Scopus
  7. D. Huang, Y. Li, and S. Radhakrishnan, “Optical coherence tomography of the anterior segment of the eye,” Ophthalmology Clinics of North America, vol. 17, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Schornack and S. V. Patel, “Relationship between corneal topographic indices and scleral lens base curve,” Eye and Contact Lens, vol. 36, no. 6, pp. 330–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Gemoules, “A novel method of fitting scleral lenses using high resolution optical coherence tomography,” Eye and Contact Lens, vol. 34, no. 2, pp. 80–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Hall, G. Young, J. S. Wolffsohn, and C. Riley, “The influence of corneoscleral topography on soft contact lens fit,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6801–6806, 2011.
  11. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Scopus
  12. M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” Journal of Cataract and Refractive Surgery, vol. 36, no. 12, pp. 2115–2122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” Journal of Cataract and Refractive Surgery, vol. 36, no. 5, pp. 826–831, 2010. View at Publisher · View at Google Scholar · View at Scopus