About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2013 (2013), Article ID 369094, 9 pages
http://dx.doi.org/10.1155/2013/369094
Review Article

Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

Department of Microbiology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA

Received 31 May 2012; Accepted 12 December 2012

Academic Editor: Andrew G. Lee

Copyright © 2013 Mary E. Marquart and Richard J. O'Callaghan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Asbell and S. Stenson, “Ulcerative keratitis. Survey of 30 years' laboratory experience,” Archives of Ophthalmology, vol. 100, no. 1, pp. 77–80, 1982. View at Scopus
  2. D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “A new topical model of Staphylococcus corneal infection in the mouse,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1591–1597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Salyers and D. D. Whitt, Bacterial Pathogenesis, a Molecular Approach, ASM Press, Washington, DC, USA, 2nd edition, 2002.
  4. M. Traidej, A. R. Caballero, M. E. Marquart, B. A. Thibodeaux, and R. J. O'Callaghan, “Molecular analysis of Pseudomonas aeruginosa protease IV expressed in Pseudomonas putida,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 190–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. A. Thibodeaux, A. R. Caballero, M. E. Marquart, J. Tommassen, and R. J. O'Callaghan, “Corneal virulence of Pseudomonas aeruginosa elastase B and alkaline protease produced by Pseudomonas putida,” Current Eye Research, vol. 32, no. 4, pp. 373–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. O'Callaghan, “Role of exoproteins in bacterial keratitis: the Fourth Annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group Meeting, November 7, 1998,” Cornea, vol. 18, no. 5, pp. 532–537, 1999. View at Scopus
  7. J. A. Hobden, J. M. Hill, L. S. Engel, and R. J. O'Callaghan, “Age and therapeutic outcome of experimental Pseudomonas aeruginosa keratitis treated with ciprofloxacin, prednisolone, and flurbiprofen,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 9, pp. 1856–1859, 1993. View at Scopus
  8. J. A. Hobden, L. S. Engel, J. M. Hill, M. C. Callegan, and R. J. O'Callaghan, “Prednisolone acetate or prednisolone phosphate concurrently administered with ciprofloxacin for the therapy of experimental Pseudomonas aeruginosa keratitis,” Current Eye Research, vol. 12, no. 5, pp. 469–473, 1993. View at Scopus
  9. B. A. Thibodeaux, A. R. Caballero, J. J. Dajcs, M. E. Marquart, L. S. Engel, and R. J. O'Callaghan, “Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity,” Ocular Immunology and Inflammation, vol. 13, no. 2-3, pp. 169–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Ogushi, H. Eguchi, T. Kuwahara, N. Hayabuchi, and M. Kawabata, “Molecular genetic investigations of contaminated contact lens storage cases as reservoirs of Pseudomonas aeruginosa keratitis,” Japanese Journal of Ophthalmology, vol. 54, no. 6, pp. 550–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. C. Poggio, R. J. Glynn, O. D. Schein et al., “The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses,” New England Journal of Medicine, vol. 321, no. 12, pp. 779–783, 1989. View at Scopus
  12. O. D. Schein and E. C. Poggio, “Ulcerative keratitis in contact lens wearers. Incidence and risk factors,” Cornea, vol. 9, supplement 1, pp. S55–S58, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Ramirez, S. M. Fleiszig, A. B. Sullivan, C. Tam, R. Borazani, and D. J. Evans, “Traversal of multilayered corneal epithelia by cytotoxic Pseudomonas aeruginosa requires the phospholipase domain of exoU,” Investigative Ophthalmology and Visual Science, vol. 53, no. 1, pp. 448–453, 2012. View at Publisher · View at Google Scholar
  14. S. S. Twining, S. E. Kirschner, L. A. Mahnke, and D. W. Frank, “Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins,” Investigative Ophthalmology and Visual Science, vol. 34, no. 9, pp. 2699–2712, 1993. View at Scopus
  15. M. E. Marquart, A. R. Caballero, M. Chomnawang, B. A. Thibodeaux, S. S. Twining, and R. J. O'Callaghan, “Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions,” Investigative Ophthalmology and Visual Science, vol. 46, no. 10, pp. 3761–3768, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Kida, Y. Higashimoto, H. Inoue, T. Shimizu, and K. Kuwano, “A novel secreted protease from Pseudomonas aeruginosa activates NF-κB through protease-activated receptors,” Cellular Microbiology, vol. 10, no. 7, pp. 1491–1504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. I. Nicas and B. H. Iglewski, “Production of elastase and other exoproducts by environmental isolates of Pseudomonas aeruginosa,” Journal of Clinical Microbiology, vol. 23, no. 5, pp. 967–969, 1986. View at Scopus
  18. K. Matsumoto, N. B. K. Shams, L. A. Hanninen, and K. R. Kenyon, “Cleavage and activation of corneal matrix metalloproteases by Pseudomonas aeruginosa proteases,” Investigative Ophthalmology and Visual Science, vol. 34, no. 6, pp. 1945–1953, 1993. View at Scopus
  19. E. Kessler, H. E. Kennah, and S. I. Brown, “Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas,” Investigative Ophthalmology and Visual Science, vol. 16, no. 6, pp. 488–497, 1977. View at Scopus
  20. C. D. White, L. G. Alionte, B. M. Cannon, A. R. Caballero, R. J. O'Callaghan, and J. A. Hobden, “Corneal virulence of LasA protease—deficient Pseudomonas aeruginosa PAO1,” Cornea, vol. 20, no. 6, pp. 643–646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. C. M. Pillar, L. D. Hazlett, and J. A. Hobden, “Alkaline protease-deficient mutants of Pseudomonas aeruginosa are virulent in the eye,” Current Eye Research, vol. 21, no. 3, pp. 730–739, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Hobden, “Pseudomonas aeruginosa proteases and corneal virulence,” DNA and Cell Biology, vol. 21, no. 5-6, pp. 391–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Kernacki, J. A. Hobden, L. D. Hazlett, R. Fridman, and R. S. Berk, “In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection,” Investigative Ophthalmology and Visual Science, vol. 36, no. 7, pp. 1371–1378, 1995. View at Scopus
  24. Y. Kida, T. Shimizu, and K. Kuwano, “Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice,” Infection and Immunity, vol. 79, no. 1, pp. 211–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Caballero, B. Thibodeaux, M. Marquart, M. Traidej, and R. J. O'Callaghan, “Pseudomonas keratitis: protease IV gene conservation, distribution, and production relative to virulence and other pseudomonas proteases,” Investigative Ophthalmology and Visual Science, vol. 45, no. 2, pp. 522–530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Conibear, M. Wilcox, J. R. Flanagan, and H. Zhu, “Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates,” Journal of Medical Microbiology, vol. 61, part 2, pp. 180–190, 2012. View at Publisher · View at Google Scholar
  27. L. S. Engel, J. M. Hill, A. R. Caballero, L. C. Green, and R. J. O'Callaghan, “Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa,” Journal of Biological Chemistry, vol. 273, no. 27, pp. 16792–16797, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. A. R. Caballero, J. M. Moreau, L. S. Engel, M. E. Marquart, J. M. Hill, and R. J. O'Callaghan, “Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases,” Analytical Biochemistry, vol. 290, no. 2, pp. 330–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Malloy, R. A. W. Veldhuizen, B. A. Thibodeaux, R. J. O'Callaghan, and J. R. Wright, “Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions,” American Journal of Physiology/Lung Cell Molecular Physiology, vol. 288, no. 2, pp. L409–L418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Tang, M. E. Marquart, J. D. Fratkin et al., “Properties of PASP: a pseudomonas protease capable of mediating corneal erosions,” Investigative Ophthalmology and Visual Science, vol. 50, no. 8, pp. 3794–3801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. J. O'Callaghan, A. Tang, M. E. Marquart, and A. R. Caballero, “Pseudomonas aeruginosa Small Protease (PASP), a keratitis virulence factor,” Investigative Ophthalmology and Visual Science, vol. 53, 2012, E-abstract 6128.
  32. A. G. Al Otaibi, K. Allam, A. J. Damri, A. A. Shamri, H. Kalantan, and A. Mousa, “Childhood microbial keratitis,” Oman Journal of Ophthalmology, vol. 5, no. 1, pp. 28–31, 2012. View at Publisher · View at Google Scholar
  33. G. Bashir, A. Shah, M. A. Thokar, S. Rashid, and S. Shakeel, “Bacterial and fungal profile of corneal ulcers—a prospective study,” Indian Journal of Pathology and Microbiology, vol. 48, no. 2, pp. 273–277, 2005. View at Scopus
  34. M. J. Bharathi, R. Ramakrishnan, S. Vasu, R. Meenakshi, and R. Palaniappan, “Aetiological diagnosis of microbial keratitis in South India—a study of 1618 cases,” Indian Journal of Medical Microbiology, vol. 20, no. 1, pp. 19–24, 2002.
  35. M. J. Bharathi, R. Ramakrishnan, S. Vasu, R. Meenakshi, C. Shivkumar, and R. Palaniappan, “Epidemiology of bacterial keratitis in a referral centre in south India,” Indian Journal of Medical Microbiology, vol. 21, no. 4, pp. 239–245, 2003. View at Scopus
  36. M. J. Bharathi, R. Ramakrishnan, R. Meenakshi, S. Padmavathy, C. Shivakumar, and M. Srinivasan, “Microbial keratitis in South India: influence of risk factors, climate, and geographical variation,” Ophthalmic Epidemiology, vol. 14, no. 2, pp. 61–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. R. Feilmeier, K. R. Sivaraman, M. Oliva, G. C. Tabin, and R. Gurung, “Etiologic diagnosis of corneal ulceration at a Tertiary Eye Center in Kathmandu, Nepal,” Cornea, vol. 29, no. 12, pp. 1380–1385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. L. Furlanetto, E. G. V. Andreo, I. G. A. Finotti, E. S. Arcieri, M. A. Ferreira, and F. J. Rocha, “Epidemiology and etiologic diagnosis of infectious keratitis in Uberlandia, Brazil,” European Journal of Ophthalmology, vol. 20, no. 3, pp. 498–503, 2010. View at Scopus
  39. R. Katiyar, S. Deorukhkar, and S. Saini, “Epidemiological features and laboratory results of bacterial and fungal keratitis: a five-year study at a rural tertiary-care hospital in western Maharashtra, India,” Singapore Medical Journal, vol. 53, no. 4, pp. 264–267, 2012.
  40. M. J. Bharathi, R. Ramakrishnan, C. Shivakumar, R. Meenakshi, and D. Lionalraj, “Etiology and antibacterial susceptibility pattern of community-acquired bacterial ocular infections in a tertiary eye care hospital in south India,” Indian Journal of Ophthalmology, vol. 58, no. 6, pp. 497–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Boonpasart, N. Kasetsuwan, V. Puangsricharern, L. Pariyakanok, and T. Jittpoonkusol, “Infectious keratitis at King Chulalongkorn Memorial Hospital: a-12-year retrospective study of 391 cases,” Journal of the Medical Association of Thailand, vol. 85, supplement 1, pp. S217–S230, 2002. View at Scopus
  42. P. Lalitha, M. Srinivasan, P. Manikandan, et al., “Relationship of in vitro susceptibility to moxifloxacin and in vivo clinical outcome in bacterial keratitis,” Clinical Infectious Diseases, vol. 54, no. 10, pp. 1381–1387, 2012. View at Publisher · View at Google Scholar
  43. T. J. Norina, S. Raihan, S. Bakiah, M. Ezanee, A. T. Liza-Sharmini, and W. H. Wan Hazzabah, “Microbial keratitis: aetiological diagnosis and clinical features in patients admitted to Hospital Universiti Sains Malaysia,” Singapore Medical Journal, vol. 49, no. 1, pp. 67–71, 2008. View at Scopus
  44. S. Ramesh, R. Ramakrishnan, M. J. Bharathi, M. Amuthan, and S. Viswanathan, “Prevalence of bacterial pathogens causing ocular infections in South India,” Indian Journal of Pathology and Microbiology, vol. 53, no. 2, pp. 281–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Schaefer, O. Bruttin, L. Zografos, and Y. Guex-Crosier, “Bacterial keratitis: a prospective clinical and microbiological study,” British Journal of Ophthalmology, vol. 85, no. 7, pp. 842–847, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Shalchi, A. Gurbaxani, M. Baker, and J. Nash, “Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom,” Ophthalmology, vol. 118, no. 11, pp. 2161–2165, 2011. View at Publisher · View at Google Scholar
  47. G. Varaprasathan, K. Miller, T. Lietman et al., “Trends in the etiology of infectious corneal ulcers at the F. I. Proctor Foundation,” Cornea, vol. 23, no. 4, pp. 360–364, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. D. Wagoner, S. A. Al-Swailem, J. E. Sutphin, and M. B. Zimmerman, “Bacterial keratitis after penetrating keratoplasty. Incidence, microbiological profile, graft survival, and visual outcome,” Ophthalmology, vol. 114, no. 6, pp. 1073–1079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Yilmaz, I. Ozturk, and A. Maden, “Microbial keratitis in West Anatolia, Turkey: a retrospective review,” International Ophthalmology, vol. 27, no. 4, pp. 261–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. B. Cosar, E. J. Cohen, C. J. Rapuano, and P. R. Laibson, “Clear corneal wound infection after phacoemulsification,” Archives of Ophthalmology, vol. 119, no. 12, pp. 1755–1759, 2001. View at Scopus
  51. T. Lifshitz, J. Levy, F. Raiskup, I. Klemperer, and J. Frucht-Pery, “Two cases of pneumococcal keratitis following myopic LASIK,” Journal of Refractive Surgery, vol. 21, no. 5, pp. 498–501, 2005. View at Scopus
  52. M. E. Mulet, J. J. Pérez-Santonja, C. Ferrer, and J. L. Alió, “Microbial keratitis after intrastromal corneal ring segment implantation,” Journal of Refractive Surgery, vol. 26, no. 5, pp. 364–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Nubile, P. Carpineto, M. Lanzini, M. Ciancaglini, E. Zuppardi, and L. Mastropasqua, “Multilayer amniotic membrane transplantation for bacterial keratitis with corneal perforation after hyperopic photorefractive keratectomy. Case report and literature review,” Journal of Cataract and Refractive Surgery, vol. 33, no. 9, pp. 1636–1640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. U. Rehany, G. Balut, E. Lefler, and S. Rumelt, “The prevalence and risk factors for donor corneal button contamination and its association with ocular infection after transplantation,” Cornea, vol. 23, no. 7, pp. 649–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Griffith, “The significance of pneumococcal types,” Journal of Hygiene, vol. 27, no. 2, pp. 113–159, 1928. View at Publisher · View at Google Scholar
  56. O. T. Avery, C. M. MacLeod, and M. McCarty, “Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III,” Journal of Experimental Medicine, vol. 79, no. 1, pp. 137–158, 1944.
  57. E. W. Norcross, N. A. Tullos, S. D. Taylor, M. E. Sanders, and M. E. Marquart, “Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection,” Current Eye Research, vol. 35, no. 9, pp. 787–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Reed, R. J. O'Callaghan, D. O. Girgis, C. C. McCormick, A. R. Caballero, and M. E. Marquart, “Ocular virulence of capsule-deficient Streptococcus pneumoniae in a rabbit keratitis model,” Investigative Ophthalmology and Visual Science, vol. 46, no. 2, pp. 604–608, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. K. Johnson, “Cellular location of pneumolysin,” FEMS Microbiology Letters, vol. 2, no. 5, pp. 243–245, 1977. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Kanclerski and R. Möllby, “Production and purification of Streptococcus pneumoniae hemolysin (pneumolysin),” Journal of Clinical Microbiology, vol. 25, no. 2, pp. 222–225, 1987. View at Scopus
  61. C. Steinfort, R. Wilson, T. Mitchell et al., “Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro,” Infection and Immunity, vol. 57, no. 7, pp. 2006–2013, 1989. View at Scopus
  62. K. E. Price and A. Camilli, “Pneumolysin localizes to the cell wall of Streptococcus pneumoniae,” Journal of Bacteriology, vol. 191, no. 7, pp. 2163–2168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. P. J. Morgan, S. C. Hyman, O. Byron, P. W. Andrew, T. J. Mitchell, and A. J. Rowe, “Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form,” Journal of Biological Chemistry, vol. 269, no. 41, pp. 25315–25320, 1994. View at Scopus
  64. P. J. Morgan, S. C. Hyman, A. J. Rowe, T. J. Mitchell, P. W. Andrew, and H. R. Saibil, “Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin,” FEBS Letters, vol. 371, no. 1, pp. 77–80, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. S. J. Tilley, E. V. Orlova, R. J. C. Gilbert, P. W. Andrew, and H. R. Saibil, “Structural basis of pore formation by the bacterial toxin pneumolysin,” Cell, vol. 121, no. 2, pp. 247–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. K. Johnson, D. Boese-Marrazzo, and W. A. Pierce Jr., “Effects of pneumolysin on human polymorphonuclear leukocytes and platelets,” Infection and Immunity, vol. 34, no. 1, pp. 171–176, 1981. View at Scopus
  67. J. C. Paton, B. Rowan Kelly, and A. Ferrante, “Activation of human complement by the pneumococcal toxin pneumolysin,” Infection and Immunity, vol. 43, no. 3, pp. 1085–1087, 1984. View at Scopus
  68. M. K. Johnson and J. H. Allen, “Ocular toxin of the pneumococcus,” American Journal of Ophthalmology, vol. 72, no. 1, pp. 175–180, 1971. View at Scopus
  69. M. K. Johnson and J. H. Allen, “The role of cytolysin in pneumococcal ocular infection,” American Journal of Ophthalmology, vol. 80, no. 3, part 2, pp. 518–521, 1975. View at Scopus
  70. M. K. Johnson, J. A. Hobden, M. Hagenah, R. J. O'Callaghan, J. M. Hill, and S. Chen, “The role of pneumolysin in ocular infections with Streptococcus pneumoniae,” Current Eye Research, vol. 9, no. 11, pp. 1107–1114, 1990. View at Scopus
  71. M. K. Johnson, M. C. Callegan, L. S. Engel et al., “Growth and virulence of a complement-activation-negative mutant of Streptococcus pneumoniae in the rabbit cornea,” Current Eye Research, vol. 14, no. 4, pp. 281–284, 1995. View at Scopus
  72. J. C. Harrison, Z. A. Karcioglu, and M. K. Johnson, “Response of leukopenic rabbits to pneumococcal toxin,” Current Eye Research, vol. 2, no. 10, pp. 705–710, 1982-1983. View at Scopus
  73. S. N. Green, M. Sanders, Q. C. Moore III et al., “Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum,” Investigative Ophthalmology and Visual Science, vol. 49, no. 1, pp. 290–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. Q. C. Moore III, C. C. McCormick, E. W. Norcross et al., “Development of a Streptococcus pneumoniae keratitis model in mice,” Ophthalmic Research, vol. 42, no. 3, pp. 141–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. K. Johnson, C. Geoffroy, and J. E. Alouf, “Binding of cholesterol by sulfhydryl-activated cytolysins,” Infection and Immunity, vol. 27, no. 1, pp. 97–101, 1980. View at Scopus
  76. M. E. Marquart, K. S. Monds, C. C. McCormick et al., “Cholesterol as treatment for pneumococcal keratitis: cholesterol-specific inhibition of pneumolysin in the cornea,” Investigative Ophthalmology and Visual Science, vol. 48, no. 6, pp. 2661–2666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. M. E. Sanders, N. A. Tullos, S. D. Taylor et al., “Moxifloxacin and cholesterol combined treatment of pneumococcal keratitis,” Current Eye Research, vol. 35, no. 12, pp. 1142–1147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. E. W. Norcross, M. E. Sanders, Q. C. Moore III, et al., “Active immunization with pneumolysin versus 23-valent polysaccharide vaccine for Streptococcus pneumoniae keratitis,” Investigative Ophthalmology and Visual Science, vol. 52, no. 12, pp. 9232–9243, 2011. View at Publisher · View at Google Scholar
  79. A. M. Mitchell and T. J. Mitchell, “Streptococcus pneumoniae: virulence factors and variation,” Clinical Microbiology and Infection, vol. 16, no. 5, pp. 411–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. M. Williamson, R. Gowrisankar, D. L. Longo et al., “Adherence of nontypeable Streptococcus pneumoniae to human conjunctival epithelial cells,” Microbial Pathogenesis, vol. 44, no. 3, pp. 175–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Govindarajan, B. B. Menon, S. Spurr-Michaud, et al., “A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier,” PLoS One, vol. 7, no. 3, article e32418, 2012.
  82. T. J. Liesegang, “Bacterial keratitis,” in The Cornea, H. E. Kaufman, B. A. Baron, and M. A. McDonald, Eds., Butterworth-Heineman, Boston, Mass, USA, 1998.
  83. V. W. Wong, T. Y. Lai, S. C. Chi, and D. S. Lam, “Pediatric ocular surface infections: a 5-year review of demographics, clinical features, risk factors, microbiological results, and treatment,” Cornea, vol. 30, no. 9, pp. 995–1002, 2011. View at Publisher · View at Google Scholar
  84. B. H. Jeng, D. C. Gritz, A. B. Kumar et al., “Epidemiology of ulcerative keratitis in Northern California,” Archives of Ophthalmology, vol. 128, no. 8, pp. 1022–1028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Kerr and G. A. Stern, “Bacterial keratitis associated with vernal keratoconjunctivitis,” Cornea, vol. 11, no. 4, pp. 355–359, 1992. View at Publisher · View at Google Scholar · View at Scopus
  86. M. L. Palmer and R. A. Hyndiuk, “Contact lens-related infectious keratitis,” International Ophthalmology Clinics, vol. 33, no. 1, pp. 23–49, 1993. View at Scopus
  87. J. W. Sowka, A. S. Gurwood, and A. G. Kabat, Handbook of Ocular Disease Management Web Site: Bacterial Keratitis, Jobson Publishing, 2001.
  88. E. Tacconelli and A. P. Johnson, “National guidelines for decolonization of methicillin-resistant Staphylococcus aureus carriers: the implications of recent experience in the Netherlands,” The Journal of Antimicrobial Chemotherapy, vol. 66, no. 10, pp. 2195–2198, 2011. View at Publisher · View at Google Scholar
  89. M. G. Speaker, F. A. Milch, M. K. Shah, W. Eisner, and B. N. Kreiswirth, “Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis,” Ophthalmology, vol. 98, no. 5, pp. 639–649, 1991. View at Scopus
  90. R. Köck, J. Harlizius, N. Bressan et al., “Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 11, pp. 1375–1382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Cheung and A. R. Slomovic, “Microbial etiology and predisposing factors among patients hospitalized for corneal ulceration,” Canadian Journal of Ophthalmology, vol. 30, no. 5, pp. 251–255, 1995. View at Scopus
  92. L. D. Ormerod, E. Hertzmark, D. S. Gomez, R. G. Stabiner, D. J. Schanzlin, and R. E. Smith, “Epidemiology of microbial keratitis in Southern California. A multivariate analysis,” Ophthalmology, vol. 94, no. 10, pp. 1322–1333, 1987. View at Scopus
  93. D. J. Coster and P. R. Badenoch, “Host, microbial, and pharmacological factors affecting the outcome of suppurative keratitis,” British Journal of Ophthalmology, vol. 71, no. 2, pp. 96–101, 1987. View at Scopus
  94. P. A. Asbell, D. F. Sahm, M. Shaw, D. C. Draghi, and N. P. Brown, “Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005,” Journal of Cataract and Refractive Surgery, vol. 34, no. 5, pp. 814–818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. B. Dave, H. S. Toma, and S. J. Kim, “Ophthalmic antibiotic use and multidrug-resistant Staphylococcus epidermidis: a controlled, longitudinal study,” Ophthalmology, vol. 118, no. 10, pp. 2035–2040, 2011. View at Publisher · View at Google Scholar
  96. I. Morrissey, R. Burnett, L. Viljoen, and M. Robbins, “Surveillance of the susceptibility of ocular bacterial pathogens to the fluoroquinolone gatifloxacin and other antimicrobials in Europe during 2001/2002,” The Journal of Infection, vol. 49, no. 2, pp. 109–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. McDonald and J. M. Blondeau, “Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones,” Journal of Cataract and Refractive Surgery, vol. 36, no. 9, pp. 1588–1598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Schmidt and M. Hensel, “Pathogenicity islands in bacterial pathogenesis,” Clinical Microbiology Reviews, vol. 17, no. 1, pp. 14–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. M. C. Enright, “The population structure of Staphylococcus aureus,” in Staphylococcus Molecular Genetics, J. A. Lindsay, Ed., pp. 29–43, Caister Academic Press, Norfolk, UK, 2008.
  100. P. R. McAdam, K. E. Templeton, G. F. Edwards, et al., “Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 23, pp. 9107–9112, 2012. View at Publisher · View at Google Scholar
  101. B. D. Jett and M. S. Gilmore, “Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors,” Infection and Immunity, vol. 70, no. 8, pp. 4697–4700, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. M. N. Rhem, E. M. Lech, J. M. Patti et al., “The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis,” Infection and Immunity, vol. 68, no. 6, pp. 3776–3779, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. D. O. Girgis, J. J. Dajcs, and R. J. O'Callaghan, “Phospholipase A2 activity in normal and Staphylococcus aureus-infected rabbit eyes,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 197–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. J. M. Moreau, D. O. Girgis, E. B. H. Hume, J. J. Dajcs, M. S. Austin, and R. J. O'Callaghan, “Phospholipase A2 in rabbit tears: a host defense against Staphylococcus aureus,” Investigative Ophthalmology and Visual Science, vol. 42, no. 10, pp. 2347–2354, 2001. View at Scopus
  105. E. B. H. Hume, J. J. Dajcs, J. M. Moreau, G. D. Sloop, M. D. P. Willcox, and R. J. O'Callaghan, “Staphylococcus corneal virulence in a new topical model of infection,” Investigative Ophthalmology and Visual Science, vol. 42, no. 12, pp. 2904–2908, 2001. View at Scopus
  106. R. J. O'Callaghan, M. C. Callegan, J. M. Moreau et al., “Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection,” Infection and Immunity, vol. 65, no. 5, pp. 1571–1578, 1997. View at Scopus
  107. J. M. Moreau, G. D. Sloop, L. S. Engel, J. M. Hill, and R. J. O'Callaghan, “Histopathological studies of staphylococcal alpha-toxin: effects on rabbit corneas,” Current Eye Research, vol. 16, no. 12, pp. 1221–1228, 1997. View at Scopus
  108. D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “A new topical model of Staphylococcus corneal infection in the mouse,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1591–1597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “Effects of toxin production in a murine model of Staphylococcus aureus keratitis,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2064–2070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Kebaier, R. C. Chamberland, I. C. Allen, et al., “Staphylococcus aureusα-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome,” Journal of Infectious Diseases, vol. 205, no. 5, pp. 807–817, 2012. View at Publisher · View at Google Scholar
  111. G. Menestrina, M. D. Serra, and G. Prévost, “Mode of action of β-barrel pore-forming toxins of the staphylococcal α-hemolysin family,” Toxicon, vol. 39, no. 11, pp. 1661–1672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Pany, R. Vijayvargia, and M. V. Krishnasastry, “Caveolin-1 binding motif of α-hemolysin: its role in stability and pore formation,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 29–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Vijayvargia, C. G. Suresh, and M. V. Krishnasastry, “Functional form of caveolin-1 is necessary for the assembly of α-hemolysin,” Biochemical and Biophysical Research Communications, vol. 324, no. 3, pp. 1130–1136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. C. C. McCormick, A. R. Caballero, C. L. Balzli, A. Tang, and R. J. O'Callaghan, “Chemical inhibition of alpha-toxin, a key corneal virulence factor of Staphylococcus aureus,” Investigative Ophthalmology and Visual Science, vol. 50, no. 6, pp. 2848–2854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. C. Weeks, C. L. Balzli, A. R. Caballero, A. Tang, and R. J. O'Callaghan, “Identification and potency of cyclodextrin-lipid inhibitors of Staphylococcus aureusα-toxin,” Current Eye Research, vol. 37, no. 2, pp. 87–93, 2012. View at Publisher · View at Google Scholar
  116. J. H. Freer and J. P. Arbuthnott, “Toxins of Staphylococcus aureus,” Pharmacology and Therapeutics, vol. 19, no. 1, pp. 55–106, 1982. View at Scopus
  117. M. Clyne, J. De Azavedo, E. Carlson, and J. Arbuthnott, “Production of gamma-hemolysin and lack of production of alpha-hemolysin by Staphylococcus aureus strains associated with toxic shock syndrome,” Journal of Clinical Microbiology, vol. 26, no. 3, pp. 535–539, 1988. View at Scopus
  118. J. J. Dajcs, M. S. Austin, G. D. Sloop et al., “Corneal pathogenesis of Staphylococcus aureus strain Newman,” Investigative Ophthalmology and Visual Science, vol. 43, no. 4, pp. 1109–1115, 2002. View at Scopus
  119. G. Supersac, Y. Piémont, M. Kubina, G. Prévost, and T. J. Foster, “Assessment of the role of gamma-toxin in experimental endophthalmitis using a hlg-deficient mutant of Staphylococcus aureus,” Microbial Pathogenesis, vol. 24, no. 4, pp. 241–251, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. A. M. Arana, C. L. Balzli, A. C. Weeks, A. Tang, A. R. Caballero, and R. J. O'Callaghan, “Pathogenesis of Staphylococcus aureus endophthalmitis: analysis of alpha-toxin and gamma-toxin in the rabbit anterior chamber,” Investigative Ophthalmology & Visual Science, vol. 53, 2012, E-abstract 2772.
  121. K. Yamashita, Y. Kawai, Y. Tanaka, et al., “Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two component,” Proceeding of the National Academy of Sciences of the United States of America, vol. 108, no. 42, pp. 17314–17319, 2011.
  122. A. Gravet, D. A. Colin, D. Keller, R. Girardot, H. Monteil, and G. Prevost, “Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family,” FEBS Letters, vol. 436, no. 2, pp. 202–208, 1998. View at Publisher · View at Google Scholar
  123. S. Szmigieski, G. Prevost, H. Monteil, D. A. Colin, and J. Jelaszewicz, “Leukocidal toxins of staphylococci,” Zentralblatt für Bakteriologie, vol. 289, no. 2, pp. 185–201, 1999. View at Publisher · View at Google Scholar
  124. N. Sugawara, T. Tomita, and Y. Kamio, “Assembly of Staphylococcus aureusγ-hemolysin into a pore-forming ring- shaped complex on the surface of human erythrocytes,” FEBS Letters, vol. 410, no. 2-3, pp. 333–337, 1997. View at Publisher · View at Google Scholar · View at Scopus
  125. A. R. Caballero, T. J. Foster, I. R. Monk, A. Tang, C. L. Balzli, and R. J. O'Callaghan, “Ocular pathology of a Staphylococcus aureus mutant lacking a recently discovered virulence factor,” Investigative Ophthalmology and Visual Science, vol. 51, 2010, E-abstract 3891.
  126. J. D. Fraser and T. Proft, “The bacterial superantigen and superantigen-like proteins,” Immunological Reviews, vol. 225, no. 1, pp. 226–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. A. R. Caballero, C. C. McCormick, A. Tang, and R. J. O'Callaghan, “Isolation and characterization of a new Staphylococcus aureus protease,” Investigative Ophthalmology and Visual Science, vol. 49, 2008, abstract 5514.
  128. N. Balaban and R. P. Novick, “Autocrine regulation of toxin synthesis by Staphylococcus aureus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1619–1623, 1995. View at Publisher · View at Google Scholar · View at Scopus