About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2013 (2013), Article ID 529187, 4 pages
http://dx.doi.org/10.1155/2013/529187
Clinical Study

18-Fluorodeoxyglucose Uptake by Positron Emission Tomography in Extraocular Muscles of Patients with and without Graves' Ophthalmology

1Instituto de Oftalmología “Fundación de Asistencia Privada Conde de Valenciana I.A.P.”, 06800 Mexico City, DF, Mexico
2Unidad PET/CT Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, DF, Mexico

Received 17 August 2012; Revised 5 December 2012; Accepted 9 January 2013

Academic Editor: Lawrence S. Morse

Copyright © 2013 Leonardo García-Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective. To compare 18-fluorodeoxyglucose (FDG) uptake by positron emission tomography (PET) in extraocular muscles (EOMs) of patients with Graves’ ophthalmopathy (GO) versus patients without GO. Design. Prospective, observational, comparative, and cross-sectional study. Participants. Thirty-two eyes of patients with GO and seventy eyes of patients without GO. Methods. We prospectively included patients older than 18 years of age with and without GO. FDG-PET imaging study was performed; standardized unit value ( ) was quantified in EOMs. Standard deviation and significant statistical difference ( ) were calculated. Results. Thirty-two eyes of sixteen patients of the GO group were included, with a mean age of 44.31 (20–71) years. Seventy eyes of thirty-five patients of the group without GO were included, with a mean age of 49.20 (24–77) years. EOMs average uptake of the groups with and without GO were 3.38 ± 1.31 and 1.89 ± 0.51 ( ), respectively. Conclusion. FDG uptake was significantly increased in EOMs of patients with GO. PET gives valuable information and may be a helpful tool in detecting, localizing, and quantifying GO inflammation. Further research is needed to define the role of PET in detecting, grading, and following up GO in order to optimize treatment in the inflammatory stage.