About this Journal Submit a Manuscript Table of Contents
Journal of Ophthalmology
Volume 2013 (2013), Article ID 784172, 4 pages
http://dx.doi.org/10.1155/2013/784172
Research Article

Intraocular Microsurgical Forceps (20, 23, and 25 gauge) Membrane Peeling Forces Assessment

1Department of Ophthalmology, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Aurora, CO 80045, USA
2Department of Ophthalmology, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204, USA

Received 8 April 2013; Accepted 10 June 2013

Academic Editor: Michel Eid Farah

Copyright © 2013 Raul Velez-Montoya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery,” in Medical Image Computing and Computer-Assisted Intervention, vol. 6363 of Lecture Notes in Computer Science, pp. 303–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. A. E. Mazinani, A. Rajendram, P. Walter, and G. F. Roessler, “Does surgical experience have an effect on the success of retinal detachment surgery?” Retina, vol. 32, no. 1, pp. 32–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Gonenc, M. A. Balicki, J. Handa, et al., “Evaluation of a micro-force sensing handheld robot for vitreoretinal surgery,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '12), pp. 4125–4130, Vilamoura-Algarve, Portugal, October 2012.
  4. J.-P. Hubschman, J.-L. Bourges, W. Choi et al., “The microhand: a new concept of micro-forceps for ocular robotic surgery,” Eye, vol. 24, no. 2, pp. 364–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. L. Jackson, P. H. Donachie, J. M. Sparrow, and R. L. Johnston, “United Kingdom National Ophthalmology Database Study of Vitreoretinal Surgery: report 2, macular hole,” Ophthalmology, vol. 120, no. 3, pp. 629–634, 2013. View at Publisher · View at Google Scholar
  6. A. Ang, D. R. J. Snead, S. James et al., “A rationale for membrane peeling in the repair of stage 4 macular holes,” Eye, vol. 20, no. 2, pp. 208–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kusuhara, S. Ooto, D. Kimura et al., “Outcomes of 23- and 25-gauge transconjunctival sutureless vitrectomies for idiopathic macular holes,” British Journal of Ophthalmology, vol. 92, no. 9, pp. 1261–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Bhisitkul and C. G. Keller, “Development of microelectromechanical systems (MEMS) forceps for intraocular surgery,” British Journal of Ophthalmology, vol. 89, no. 12, pp. 1586–1588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minimally Invasive Therapy and Allied Technologies, vol. 10, no. 4-5, pp. 209–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. P. J. Ferrone and K. M. Chaudhary, “Macular epiretinal membrane peeling treatment outcomes in young children,” Retina, vol. 32, no. 3, pp. 530–536, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. I. U. Scott, H. W. Flynn Jr., N. Acar et al., “Incidence of endophthalmitis after 20-gauge vs 23-gauge vs 25-gauge pars plana vitrectomy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 249, no. 3, pp. 377–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Haas, G. Seidel, I. Steinbrugger et al., “Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery,” Retina, vol. 30, no. 1, pp. 112–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. J. Ernst, R. Velez-Montoya, D. Kujundzic, E. Kujundzic, and J. L. Olson, “Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity,” Clinical & Experimental Ophthalmology, 2012. View at Publisher · View at Google Scholar
  14. M. Kita and M. F. Marmor, “Retinal adhesive force in living rabbit, cat, and monkey eyes: normative data and enhancement by mannitol and acetazolamide,” Investigative Ophthalmology and Visual Science, vol. 33, no. 6, pp. 1879–1882, 1992. View at Scopus
  15. A. S. Jagtap and C. N. Riviere, “Applied force during vitreoretinal microsurgery with handheld instruments,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '04), pp. 2771–2773, San Francisco, Calif, USA, September 2004. View at Scopus
  16. S. Sunshine, M. Balicki, X. He, et al., “A force-sensing microsurgical instrument that detects forces below human tactile sensation,” Retina, vol. 33, no. 1, pp. 200–206, 2013. View at Publisher · View at Google Scholar
  17. I. Kuru, B. Gonenc, M. Balicki, et al., “Force sensing micro-forceps for robot assisted retinal surgery,” in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '12), pp. 1401–1404, San Diego, Calif, USA, 2012.