About this Journal Submit a Manuscript Table of Contents
Journal of Pregnancy
Volume 2011 (2011), Article ID 364381, 6 pages
http://dx.doi.org/10.1155/2011/364381
Review Article

Consequences in Infants That Were Intrauterine Growth Restricted

1Department of Gynecological Science and Human Reproduction, Maternal Fetal Medicine Unit, School of Medicine, University of Padua, Padua 35128, Italy
2Department of Pediatrics, School of Medicine, University of Padua, Padua 35128, Italy

Received 28 November 2010; Accepted 23 January 2011

Academic Editor: Federico Prefumo

Copyright © 2011 Erich Cosmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Baschat, “Fetal responses to placental insufficiency: an update,” BJOG, vol. 111, no. 10, pp. 1031–1041, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. W. Seeds, “Impaired fetal growth: definition and clinical diagnosis,” Obstetrics and Gynecology, vol. 64, no. 3, pp. 303–310, 1984. View at Scopus
  3. D. G. Jang, Y. S. Jo, S. J. Lee, N. Kim, and G. S. R. Lee, “Perinatal outcomes and maternal clinical characteristics in IUGR with absent or reversed end-diastolic flow velocity in the umbilical artery,” Archives of Gynecology and Obstetrics. In press. View at Publisher · View at Google Scholar · View at PubMed
  4. M. O. Bahtiyar and J. A. Copel, “Cardiac changes in the intrauterine growth-restricted fetus,” Seminars in Perinatology, vol. 32, no. 3, pp. 190–193, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. Cox and T. Marton, “Pathological assessment of intrauterine growth restriction,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 23, no. 6, pp. 751–764, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. C. McMillen and J. S. Robinson, “Developmental origins of the metabolic syndrome: prediction, plasticity, and programming,” Physiological Reviews, vol. 85, no. 2, pp. 571–633, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. J. Stocker and M. A. Cawthorne, “The influence of leptin on early life programming of obesity,” Trends in Biotechnology, vol. 26, no. 10, pp. 545–551, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. D. Briana and A. Malamitsi-Puchner, “Intrauterine growth restriction and adult disease: the role of adipocytokines,” European Journal of Endocrinology, vol. 160, no. 3, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. C. Langley-Evans, “Nutritional programming of disease: unravelling the mechanism,” Journal of Anatomy, vol. 215, no. 1, pp. 36–51, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. S. Yajnik, “Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes,” International Journal of Gynecology and Obstetrics, vol. 104, supplement, pp. S27–S31, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. D. J. P. Barker, “Adult consequences of fetal growth restriction,” Clinical Obstetrics and Gynecology, vol. 49, no. 2, pp. 270–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. J. P. Barker, “In utero programming of cardiovascular disease,” Theriogenology, vol. 53, no. 2, pp. 555–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Bateson, D. Barker, T. Clutton-Brock et al., “Developmental plasticity and human health,” Nature, vol. 430, no. 6998, pp. 419–421, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. Osmond, E. Kajantie, T. J. Forsén, J. G. Eriksson, and D. J. P. Barker, “Infant growth and stroke in adult life: the Helsinki birth cohort study,” Stroke, vol. 38, no. 2, pp. 264–270, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. H. A. De Boo and J. E. Harding, “The developmental origins of adult disease (Barker) hypothesis,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 46, no. 1, pp. 4–14, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. C. N. Hales and D. J.P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at Publisher · View at Google Scholar
  17. D. J. P. Barker, J. G. Eriksson, T. Forsén, and C. Osmond, “Fetal origins of adult disease: strength of effects and biological basis,” International Journal of Epidemiology, vol. 31, no. 6, pp. 1235–1239, 2002. View at Publisher · View at Google Scholar
  18. C. M. Law and A. W. Shiell, “Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature,” Journal of Hypertension, vol. 14, no. 8, pp. 935–941, 1996.
  19. C. Lenfant, “Low birth weight and blood pressure,” Metabolism: Clinical and Experimental, vol. 57, no. 2, pp. S32–S35, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. R. R. Huxley, A. W. Shiell, and C. M. Law, “The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature,” Journal of Hypertension, vol. 18, no. 7, pp. 815–831, 2000.
  21. M. G. Keijzer-Veen, M. J. J. Finken, J. Nauta et al., “Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the Netherlands,” Pediatrics, vol. 116, no. 3, pp. 725–731, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. E. Cosmi, S. Visentin, T. Fanelli, and V. Zanardo, “Hypertension and renal dysfunction in infants with intrauterine growth restriction: the role of aorta intima media thickness before and after birth,” Ultrasound in Obstetrics & Gynecology, vol. 34, no. S1, p. 57, 2009.
  23. P. D. Gluckman and M. A. Hanson, Developmental Origins of Health and Disease, Cambridge University Press, Cambridge, UK, 2006.
  24. M. J. Järvisalo, L. Jartti, K. Näntö-Salonen et al., “Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children,” Circulation, vol. 104, no. 24, pp. 2943–2947, 2001.
  25. N. Teeninga, M. F. Schreuder, A. Bökenkamp, H. A. Delemarre-van de Waal, and J. A. E. van Wijk, “Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1615–1620, 2008. View at Publisher · View at Google Scholar · View at PubMed
  26. M. R. Skilton, N. Evans, K. A. Griffiths, J. A. Harmer, and D. S. Celermajer, “Aortic wall thickness in newborns with intrauterine growth restriction,” Lancet, vol. 365, no. 9469, pp. 1484–1486, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. E. Koklu, M. A. Ozturk, T. Gunes, M. Akcakus, and S. Kurtoglu, “Is increased intima-media thickness associated with preatherosclerotic changes in intrauterine growth restricted newborns?” Acta Paediatrica, International Journal of Paediatrics, vol. 96, no. 12, p. 1858, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. E. Koklu, S. Kurtoglu, M. Akcakus, A. Yikilmaz, A. Coskun, and T. Gunes, “Intima-media thickness of the abdominal aorta of neonate with different gestational ages,” Journal of Clinical Ultrasound, vol. 35, no. 9, pp. 491–497, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. M. Litwin and A. Niemirska, “Intima-media thickness measurements in children with cardiovascular risk factors,” Pediatric Nephrology, vol. 24, no. 4, pp. 707–719, 2009. View at Publisher · View at Google Scholar · View at PubMed
  30. E. Cosmi, S. Visentin, T. Fanelli, A. J. Mautone, and V. Zanardo, “Aortic intima media thickness in fetuses and children with intrauterine growth restriction,” Obstetrics and Gynecology, vol. 114, no. 5, pp. 1109–1114, 2009. View at Publisher · View at Google Scholar · View at PubMed
  31. F. Crispi, B. Bijnens, F. Figueras et al., “Fetal growth restriction results in remodeled and less efficient hearts in children,” Circulation, vol. 121, no. 22, pp. 2427–2436, 2010. View at Publisher · View at Google Scholar · View at PubMed
  32. N. Teeninga, M. F. Schreuder, A. Bökenkamp, H. A. Delemarre-van de Waal, and J. A. E. Van Wijk, “Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1615–1620, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. R. Manalich, L. Reyes, M. Herrera, C. Melendi, and I. Fundora, “Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study,” Kidney International, vol. 58, no. 2, pp. 770–773, 2000. View at Publisher · View at Google Scholar · View at PubMed
  34. B. M. Brenner, E. V. Lawler, and H. S. Mackenzie, “The hyperfiltration theory: a paradigm shift in nephrology,” Kidney International, vol. 49, no. 6, pp. 1774–1777, 1996.
  35. V. A. Luyckx and B. M. Brenner, “Low birth weight, nephron number, and kidney disease,” Kidney International, Supplement, vol. 68, no. 97, pp. S68–S77, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. M. M. Rodríguez, A. H. Gómez, C. L. Abitbol, J. J. Chandar, S. Duara, and G. E. Zilleruelo, “Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants,” Pediatric and Developmental Pathology, vol. 7, no. 1, pp. 17–25, 2004.
  37. M. E. Wlodek, K. Westcott, A. L. Siebel, J. A. Owens, and K. M. Moritz, “Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats,” Kidney International, vol. 74, no. 2, pp. 187–195, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. J. J. M. Geelhoed and V. W. V. Jaddoe, “Early influences on cardiovascular and renal development,” European Journal of Epidemiology, vol. 25, no. 10, pp. 677–692, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. M. G. Keijzer-Veen, M. Schrevel, M. J. J. Finken et al., “Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation,” Journal of the American Society of Nephrology, vol. 16, no. 9, pp. 2762–2768, 2005. View at Publisher · View at Google Scholar · View at PubMed
  40. A. Rakow, S. Johansson, L. Legnevall et al., “Renal volume and function in school-age children born preterm or small for gestational age,” Pediatric Nephrology, vol. 23, no. 8, pp. 1309–1315, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. N. Teeninga, M. F. Schreuder, A. Bökenkamp, H. A. Delemarre-van de Waal, and J. A. E. van Wijk, “Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1615–1620, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. A. Fattal-Valevski, H. Toledano-Alhadef, Y. Leitner, R. Geva, R. Eshel, and S. Harel, “Growth patterns in children with intrauterine growth retardation and their correlation to neurocognitive development,” Journal of Child Neurology, vol. 24, no. 7, pp. 846–851, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. S. D. Shenkin, J. M. Starr, A. Pattie, M. A. Rush, L. J. Whalley, and I. J. Deary, “Birth weight and cognitive function at age 11 years: the Scottish Mental Survey 1932,” Archives of Disease in Childhood, vol. 85, no. 3, pp. 189–195, 2001. View at Publisher · View at Google Scholar
  44. M. Yanney and N. Marlow, “Paediatric consequences of fetal growth restriction,” Seminars in Fetal and Neonatal Medicine, vol. 9, no. 5, pp. 411–418, 2004. View at Publisher · View at Google Scholar · View at PubMed
  45. A. J. M. van den Broek, J. H. Kok, B. A. Houtzager, and S. A. Scherjon, “Behavioural problems at the age of eleven years in preterm-born children with or without fetal brain sparing: a prospective cohort study,” Early Human Development, vol. 86, no. 6, pp. 379–384, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. J. H. Kok, A. L. den Ouden, S. P. Verloove-Vanhorick, and R. Brand, “Outcome of very preterm small for gestational age infants: the first nine years of life,” British Journal of Obstetrics and Gynaecology, vol. 105, no. 2, pp. 162–168, 1998.
  47. N. Padilla, J. Perapoch, A. Carrascosa, R. Acosta-Rojas, F. Botet, and E. Gratacós, “Twelve-month neurodevelopmental outcome in preterm infants with and without intrauterine growth restriction,” Acta Paediatrica, vol. 99, no. 10, pp. 1498–1503, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. A. A. Baschat, R. M. Viscardi, B. Hussey-Gardner, N. Hashmi, and C. Harman, “Infant neurodevelopment following fetal growth restriction: relationship with antepartum surveillance parameters,” Ultrasound in Obstetrics and Gynecology, vol. 33, no. 1, pp. 44–50, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. E. Hernandez-Andrade, H. Figueroa-Diesel, T. Jansson, H. Rangel-Nava, and E. Gratacos, “Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses,” Ultrasound in Obstetrics and Gynecology, vol. 32, no. 1, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. D. Oros, F. Figueras, R. Cruz-Martinez et al., “Middle versus anterior cerebral artery doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery doppler,” Ultrasound in Obstetrics and Gynecology, vol. 35, no. 4, pp. 456–461, 2010. View at Publisher · View at Google Scholar