About this Journal Submit a Manuscript Table of Contents
Journal of Pathogens
Volume 2013 (2013), Article ID 424123, 13 pages
http://dx.doi.org/10.1155/2013/424123
Review Article

Probiotics as Antiviral Agents in Shrimp Aquaculture

Department of Virology, Sri Venkateswara University, Tirupati 517502, India

Received 24 February 2013; Accepted 9 April 2013

Academic Editor: Cormac G. M. Gahan

Copyright © 2013 Bestha Lakshmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. FAO, “The State of world fisheries and aquaculture,” 2002, http://www.fao.org/docrep/005/y7300e/y7300e00.htm.
  2. FAO, “State of World Fisheries and Aquaculture, Food and Agricultural Organization of the United Nations,” 2008, http://www.fao.org/docrep/011/i0250e/i0250e00.htm.
  3. SCAN, “Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human clinical and veterinary importance,” European Commission Health and Consumer Protection Directorate- General, 2003, http://ec.europa.eu/food/fs/sc/scan/out108_en.pdf.
  4. R. Naylor and M. Burke, “Aquaculture and ocean resources: raising tigers of the sea,” Annual Review of Environment and Resources, vol. 30, pp. 185–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Naylor, J. Eagle, and W. L. Smith, “Salmon aquaculture in the Pacific Northwest: a global industry with local impacts,” Environment, vol. 45, no. 8, pp. 18–39, 2003. View at Scopus
  6. R. L. Naylor, R. J. Goldburg, J. H. Primavera et al., “Effect of aquaculture on world fish supplies,” Nature, vol. 405, no. 6790, pp. 1017–1024, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Goldburg and R. Naylor, “Future seascapes, fishing, and fish farming,” Frontiers in Ecology and the Environment, vol. 3, no. 1, pp. 21–28, 2005. View at Scopus
  8. A. B. Boxall, L. A. Fogg, P. A. Blackwell, P. Kay, E. J. Pemberton, and A. Croxfor, “Veterinary medicines in the environment,” Reviews of Environmental Contaminationand Toxicology, vol. 180, pp. 1–91, 2004.
  9. K. Haya, L. E. Burridge, and B. D. Chang, “Environmental impact of chemical wastes produced by the salmon aquaculture industry,” ICES Journal of Marine Science, vol. 58, no. 2, pp. 492–496, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Grave, E. Lingaas, M. Bangen, and M. Rønning, “Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996,” Journal of Antimicrobial Chemotherapy, vol. 43, no. 2, pp. 243–252, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. T. X. Le, Y. Munekage, and S. I. Kato, “Antibiotic resistance in bacteria from shrimp farming in mangrove areas,” Science of the Total Environment, vol. 349, no. 1–3, pp. 95–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. X. Le and Y. Munekage, “Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam,” Marine Pollution Bulletin, vol. 49, no. 11-12, pp. 922–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. M. L'abée-Lund and H. Sørum, “Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide,” Microbial Drug Resistance, vol. 7, no. 3, pp. 263–272, 2001. View at Scopus
  14. H. Sorum, F. M. Aarestrup, and D. C. Washington, “Antimicrobial drug resistance in fish pathogen,” in Antimicrobial Resistance in Bacteria of Animal Origin, pp. 213–223, American Society for Microbiology press, Washington, DC, USA, 2006.
  15. F. J. Angulo, V. N. Nargund, and T. C. Chiller, “Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance,” Journal of Veterinary Medicine Series B, vol. 51, no. 8-9, pp. 374–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. C. Cabello, “Antibiotics and aquaculture in Chile: implications for human and animal health,” Revista Medica de Chile, vol. 132, no. 8, pp. 1001–1006, 2004. View at Scopus
  17. F. C. Cabello, “An analysis of their potential impact upon the environment, human and animal health in Chile,” Antibiotics and Aquaculture, vol. 17, pp. 1–16, 2003.
  18. R. J. Goldburg, M. S. Elliot, and R. L. Naylor, “Marine Aquaculture in the United States: environmental impacts and policy options,” Tech. Rep., PEW Oceans Commission, Stanford, Calif, USA, 2001.
  19. K. Grave, A. Markestad, and M. Bangen, “Comparison in prescribing patterns of antibacterial drugs in salmonid farming in Norway during the periods 1980–1988 and 1989–1994,” Journal of Veterinary Pharmacology and Therapeutics, vol. 19, no. 3, pp. 184–191, 1996. View at Scopus
  20. J. E. Davies, M. C. Roberts, S. B. Levy, G. H. Miller, T. F. Brien, and F. C. Tenover, “Antimicrobial resistance: an ecological perspective,” A Report from the American Academy of Microbiology, American Academy of Microbiology, Washington, DC, USA, 1999.
  21. C. J. Hunter, D. Karl, and M. Buckley, “Marine microbial diversity: the key to earth’s habitability,” A Report from the American Academy of Microbiology, Marine Microbial Diversity, San Francisco, Calif, USA; American Academy of Microbiology, Washington, DC, USA, 2005.
  22. C. D. Miranda and R. Zemelman, “Antibiotic resistant bacteria in fish from the Concepción Bay, Chile,” Marine Pollution Bulletin, vol. 42, no. 11, pp. 1096–1102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. G. Lundin, “Global attempt to address shrimp disease,” Marine Environmental Paper 4, The World Bank, 1996.
  24. L. F. Gibson, J. Woodworth, and A. M. George, “Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii,” Aquaculture, vol. 169, no. 1-2, pp. 111–120, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Nayak and S. C. Mukherjee, “Screening of gastrointestinal bacteria of Indian major carps for a candidate probiotic species for aquaculture practices,” Aquaculture Research, vol. 42, no. 7, pp. 1034–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Rahman, S. N. Khan, M. N. Naser, and M. M. Karim, “Safety issues of isolated probiotic natured bacteria from Bangladesh coastal waters for controlling shrimp diseases,” Journal of Scientific Research, vol. 3, no. 3, pp. 659–668, 2011.
  27. K. V. Lalitha and P. K. Surendran, “Bacterial microflora associated with farmed freshwater prawn Macrobrachium rosenbergii (de Man) and the aquaculture environment,” Aquaculture Research, vol. 35, no. 7, pp. 629–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Gullian, F. Thompson, and J. Rodriguez, “Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei,” Aquaculture, vol. 233, no. 1–4, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Defoirdt, N. Boon, P. Sorgeloos, W. Verstraete, and P. Bossier, “Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example,” Trends in Biotechnology, vol. 25, no. 10, pp. 472–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Rengpipat, W. Phianphak, S. Piyatiratitivorakul, and P. Menasveta, “Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth,” Aquaculture, vol. 167, no. 3-4, pp. 301–313, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. F. N. Vieira, C. C. Buglione, J. P. L. Mouriño et al., “Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi,” Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, vol. 62, no. 3, pp. 631–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Balcázar and T. Rojas-Luna, “Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei),” Current Microbiology, vol. 55, no. 5, pp. 409–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Das, P. S. Lyla, and S. Ajmal Khan, “Application of Streptomyces as a probiotic in the laboratory culture of Penaeus monodon (Fabricius),” Israeli Journal of Aquaculture, vol. 58, no. 3, pp. 198–204, 2006. View at Scopus
  34. K. F. Liu, C. H. Chiu, Y. L. Shiu, W. Cheng, and C. H. Liu, “Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae,” Fish and Shellfish Immunology, vol. 28, no. 5-6, pp. 837–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Xie and F. Yang, “Interaction of white spot syndrome virus VP26 protein with actin,” Virology, vol. 336, no. 1, pp. 93–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Liu, P. Jiravanichpaisal, I. Söderhäll, L. Cerenius, and K. Söderhäll, “Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus,” Journal of Virology, vol. 80, no. 21, pp. 10365–10371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. F. Li, M. C. Zhang, H. J. Yang, Y. B. Zhu, and X. Xu, “Beta-intergrin mediates WSSV infection,” Virology, vol. 368, no. 1, pp. 122–132, 2007.
  38. W. Luana, F. Li, B. Wang, X. Zhang, Y. Liu, and J. Xiang, “Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis,” Comparative Biochemistry and Physiology B, vol. 147, no. 3, pp. 482–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Wongprasert, P. Sangsuriya, A. Phongdara, and S. Senapin, “Cloning and characterization of a caspase gene from black tiger shrimp (Penaeus monodon)-infected with white spot syndrome virus (WSSV),” Journal of Biotechnology, vol. 131, no. 1, pp. 9–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. H. T. Ma, S. H. K. Tiu, J. G. He, and S. M. Chan, “Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: early gene down-regulation after WSSV infection,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 430–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Y. Zhao, Z. X. Yin, X. P. Xu, S. P. Weng, X. Y. Rao, and Z. X. Dai, “A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-WSSV activity,” Journal of Virology, vol. 83, no. 1, pp. 347–356, 2009.
  42. Y. C. Liu, F. H. Li, B. Dong et al., “Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis,” Molecular Immunology, vol. 44, no. 4, pp. 598–607, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Tonganunt, B. Nupan, M. Saengsakda et al., “The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection,” Fish and Shellfish Immunology, vol. 25, no. 5, pp. 633–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Lei, F. Li, M. Zhang, H. Yang, T. Luo, and X. Xu, “Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense,” Developmental and Comparative Immunology, vol. 32, no. 7, pp. 808–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Zhang, C. Huang, and Q. Qin, “Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon,” Antiviral Research, vol. 61, no. 2, pp. 93–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Roux, A. Pain, K. R. Klimpel, and A. K. Dhar, “The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris),” Journal of Virology, vol. 76, no. 14, pp. 7140–7149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. Zhang, F. Li, B. Wang et al., “The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression,” Developmental and Comparative Immunology, vol. 31, no. 5, pp. 429–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Luo, X. Zhang, Z. Shao, and X. Xu, “PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon,” FEBS Letters, vol. 551, no. 1-3, pp. 53–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. L. L. Chen, L. C. Lu, W. J. Wu, C. F. Lo, and W. P. Huang, “White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP),” Diseases of Aquatic Organisms, vol. 74, no. 3, pp. 171–178, 2007. View at Scopus
  50. K. Sritunyalucksana, W. Wannapapho, C. F. Lo, and T. W. Flegel, “PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp,” Journal of Virology, vol. 80, no. 21, pp. 10734–10742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Wu and X. Zhang, “Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 438–445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Han and X. Zhang, “Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity,” Fish and Shellfish Immunology, vol. 23, no. 5, pp. 937–944, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Tonganunt, A. Phongdara, W. Chotigeat, and K. Fujise, “Identification and characterization of syntenin binding protein in the black tiger shrimp Penaeus monodon,” Journal of Biotechnology, vol. 120, no. 2, pp. 135–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Bangrak, P. Graidist, W. Chotigeat, K. Supamattaya, and A. Phongdara, “A syntenin-like protein with postsynaptic density protein (PDZ) domains produced by black tiger shrimp Penaeus monodon in response to white spot syndrome virus infection,” Diseases of Aquatic Organisms, vol. 49, no. 1, pp. 19–25, 2002. View at Scopus
  55. D. Moreira, M. Sabrina, F. P. Leivas, L. A. Romano, E. Luis, and E. Ballester, New Bacillus Probiotic Tested for Shrimp, Global Aquaculture Advocate, 2011.
  56. D. J. W. Moriarty and O. P. Decamp, Probiotics in Aquaculture, AQUA Culture Asia Pacific Magazine, 2005.
  57. P. Utiswannakul, S. Sangchai, and S. Rengpipat, “Enhanced growth of black tiger shrimp Penaeus monodon by dietary supplementation with Bacillus (BP11) as a probiotic,” Journal of Aquatic Research and Development, vol. 3, no. 4, pp. 2155–9546, 2011.
  58. U. Scholz, G. Garcia Diaz, D. Ricque, L. E. Cruz Suarez, F. Vargas Albores, and J. Latchford, “Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products,” Aquaculture, vol. 176, no. 3-4, pp. 271–283, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ajitha, M. Sridhar, N. Sridhar, I. S. B. Singh, and V. Varghese, “Probiotic effects of lactic acid bacteria against Vibrio alginolyticus in Penaeus (Fenneropenaeus) indicus,” Asian Journal of Fishery Sciences, vol. 17, no. 1, pp. 71–80, 2004.
  60. L. Villamil, A. Figueras, M. Planas, and B. Novoa, “Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics,” Aquaculture, vol. 219, no. 1–4, pp. 43–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. M. G. Bondad-Reantaso, R. P. Subasinghe, J. R. Arthur et al., “Disease and health management in Asian aquaculture,” Veterinary Parasitology, vol. 132, no. 3-4, pp. 249–272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Norasma and M. Saleem, Effluent and Disease Management in Traditional Practices of Shrimp Farming: A Case Study on the West Coast of Sabah, Malaysia, Research and Farming Techniques, 2008.
  63. F. PÁez-Osuna, “The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives,” Environmental Management, vol. 28, no. 1, pp. 131–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Karunasagar, M. M. Shivu, S. K. Girisha, G. Krohne, and I. Karunasagar, “Biocontrol of pathogens in shrimp hatcheries using bacteriophages,” Aquaculture, vol. 268, no. 1–4, pp. 288–292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Fuller, Probiotics 2: Applications and Practical Aspects, Chapman and Hall, London, UK, 1st edition, 1997.
  66. R. Fuller, Probiotics: The Scientific Basis, Chapman and Hall, London, UK, 1st edition, 1992.
  67. R. Fuller, “Probiotics in man and animals,” Journal of Applied Bacteriology, vol. 66, no. 5, pp. 365–378, 1989.
  68. G. W. Tannock, R. Fuller, and K. Pedersen, “Lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling,” Applied and Environmental Microbiology, vol. 56, no. 5, pp. 1310–1316, 1999. View at Scopus
  69. FAO/WHO, “Report of a Joint FAO/WHO expert consultation on evaluation of health and nutritional propeties of probiotics in food including powder milk with live lactic acid bacteria,” in Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, FAO/WHO, Cordoba, Argentina, 2001.
  70. L. Verschuere, G. Rombaut, P. Sorgeloos, and W. Verstraete, “Probiotic bacteria as biological control agents in aquaculture,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 655–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. A. M. Onarheim, R. Wiik, J. Burghardt, and E. Stagkebrandt, “Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov.,” Systematic and Applied Microbiology, vol. 17, no. 3, pp. 370–379, 1994. View at Scopus
  72. T. Sakata, “Microflora in the digestive tract of fish and shell-fish,” in Microbiology in Poecilotherms, R. Lesel, Ed., pp. 171–176, Elsevier, 1990.
  73. E. Ringø and O. Vadstein, “Colonization of Vibrio pelagius and Aeromonas caviae in early developing turbot (Scophthalmus maximus L.) larvae,” Journal of Applied Microbiology, vol. 84, no. 2, pp. 227–233, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Austin, E. Baudet, and M. Stobie, “Inhibition of bacterial fish pathogens by Tetraselmis suecica,” Journal of Fish Diseases, vol. 15, no. 1, pp. 55–61, 1992. View at Scopus
  75. B. Austin, L. F. Stuckey, P. A. W. Robertson, I. Effendi, and D. R. W. Griffith, “A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii,” Journal of Fish Diseases, vol. 18, no. 1, pp. 93–96, 1995. View at Scopus
  76. P. A. Douillet and C. J. Langdon, “Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg),” Aquaculture, vol. 119, no. 1, pp. 25–40, 1994. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Gildberg, A. Johansen, and J. Bogwald, “Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida,” Aquaculture, vol. 138, no. 1–4, pp. 23–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Gildberg, H. Mikkelsen, E. Sandaker, and E. Ringø, “Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua),” Hydrobiologia, vol. 352, no. 1–3, pp. 279–285, 1997. View at Scopus
  79. W. Phianphak, S. Rengpipat, S. Piyantiratitivorakul, and P. Menasveta, “Probiotic use of Lactobacillus spp. for black tiger shrimp. Penaeus monodon,” Journal of Scientific Research, Chulanokorn University, vol. 24, pp. 41–51, 1999.
  80. B. Austin and J. G. Day, “Inhibition of prawn pathogenic Vibrio spp. by a commercial spray-dried preparation of Tetraselmis suecica,” Aquaculture, vol. 90, no. 3-4, pp. 389–392, 1990. View at Scopus
  81. B. Austin and A. C. Billaud, “Inhibition of fish pathogen, Serratia liquefaciens, By an antibiotic producing isolate of Plamococcus recovered from sea water,” Journal of Fish Diseases, vol. 13, no. 6, pp. 553–556, 1990.
  82. C. P. Dopazo, M. L. Lemos, C. Lodeiros, J. Bolinches, J. L. Barja, and A. E. Toranzo, “Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens,” Journal of Applied Bacteriology, vol. 65, no. 2, pp. 97–101, 1988. View at Scopus
  83. P. D. Munro, H. A. McLean, A. Barbour, and T. H. Birkbeck, “Stimulation or inhibition of growth of the unicellular alga Pavlovalutheri by bacteria isolated from larval turbot culture systems,” Journal of Applied Bacteriology, vol. 79, no. 5, pp. 519–524, 1995. View at Scopus
  84. A. Westerdahl, J. C. Olsson, S. Kjelleberg, and P. L. Conway, “Isolation and characterization of turbot (Scophtalmus maximus)-associated bacteria with inhibitory effects against Vibrio anguillarum,” Applied and Environmental Microbiology, vol. 57, no. 8, pp. 2223–2228, 1991. View at Scopus
  85. E. M. M. Quigley, “Prebiotics and probiotics; modifying and mining the microbiota,” Pharmacological Research, vol. 61, no. 3, pp. 213–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. P. M. Sherman, J. C. Ossa, and H. K. Johnson, “Unravelling mechanisms of action of probiotics,” Nutrition Clinical Practices, vol. 24, no. 1, pp. 10–14, 2009.
  87. M. A. Mayra, M. Bigret, S. V. Salminen, A. Wright, and D. Marcel, “Industrial use and production of lactic acid bacteria,” in Lactic Acid Bacteria, p. 65, InTech, New York, NY, USA, 1993.
  88. K. Yasuds and N. A. Taga, “Mass culture method for Artemia salina using bacteria as food,” Medical Education Resources, vol. 18, p. 53, 1980.
  89. D. J. W. Moriarty, “The role of microorganisms in aquaculture ponds,” Aquaculture, vol. 151, no. 1–4, pp. 333–349, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. I. Karunasagar, S. K. Otta, I. Karunasagar, and K. Joshua, “Applications of Vibrio vaccine in shrimp culture,” Fishing Chimes, vol. 16, p. 49, 1996.
  91. P. Soundarapandian, V. Ramanan, and G. K. Dinakaran, “Effect of probiotics on the growth and survival of Penaeus monodon (Fabricius),” Current Research Journal of Social Sciences, vol. 2, no. 2, pp. 51–57, 2010.
  92. W. H. Holzapfel, P. Haberer, J. Snel, U. Schillinger, and J. H. J. Huisss, “Overview of gut flora and probiotics,” International Journal of Food Microbiology, vol. 41, no. 2, pp. 85–101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. C. H. Chiu, Y. K. Guu, C. H. Liu, T. M. Pan, and W. Cheng, “Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum,” Fish and Shellfish Immunology, vol. 23, no. 2, pp. 364–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Castex, P. Lemaire, N. Wabete, and L. Chim, “Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge,” Fish and Shellfish Immunology, vol. 28, no. 4, pp. 622–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Thompson, S. Gregory, S. Plummer, R. J. Shields, and A. F. Rowley, “An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific White shrimp, Litopenaeus vannamei,” Journal of Applied Microbiology, vol. 109, no. 4, pp. 1177–1187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Roch, “Defense mechanisms and disease prevention in farmed marine invertebrates,” Aquaculture, vol. 172, no. 1-2, pp. 125–145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Jiravanichpaisal, B. L. Lee, and K. Söderhäll, “Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization,” Immunobiology, vol. 211, no. 4, pp. 213–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. K. K. Lee, P. C. Liu, G. H. Kou, and S. N. Chen, “Passive immunization of the tiger prawn, Penaeus monodon, using rabbit antisera to Vibrio harveyi,” Letters in Applied Microbiology, vol. 25, no. 1, pp. 34–37, 1997. View at Scopus
  99. J. Witteveldt, C. C. Cifuentes, J. M. Vlak, and M. C. W. Van Hulten, “Protection of Penaeus monodon against white spot syndrome virus by oral vaccination,” Journal of Virology, vol. 78, no. 4, pp. 2057–2061, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Rout, S. Kumar, S. Jaganmohan, and V. Murugan, “DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp,” Vaccine, vol. 25, no. 15, pp. 2778–2786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Kawai and S. Akira, “Innate immune recognition of viral infection,” Nature Immunology, vol. 7, pp. 131–137, 2006. View at Publisher · View at Google Scholar
  102. L. Haipeng, K. Soderhall, and P. Jiranvanichpaisal, “Antiviral immunity in Crustaceans,” Fish and Shellfish Immunology, vol. 27, no. 2, pp. 79–88, 2009.
  103. W. Wang and X. Zhang, “Comparison of antiviral efficiency of immune responses in shrimp,” Fish and Shellfish Immunology, vol. 25, no. 5, pp. 522–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. W. Liu, F. Han, and X. Zhang, “Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin,” Journal of Proteome Research, vol. 8, no. 3, pp. 1198–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. W. Wu, L. Wang, and X. Zhang, “Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection,” Virology, vol. 332, no. 2, pp. 578–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Xu, F. Han, and X. Zhang, “Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA,” Antiviral Research, vol. 73, no. 2, pp. 126–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. Ting, Z. Rangrong, and Z. Xiaobo, “The role of White spot syndrome virus (WSSV) VP466 protein in shrimp antiviral phagocytosis,” Fish and Shellfish Immunology, vol. 33, no. 2, pp. 350–358, 2012.
  108. J. Xu, F. Han, and X. Zhang, “Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA,” Antiviral Research, vol. 73, no. 2, pp. 126–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Kamei, M. Yoshimizu, Y. Ezura, and T. Kimura, “Screening of bacteria with antiviral activity from fresh water salmonid hatcheries,” Microbiology and Immunology, vol. 32, no. 1, pp. 67–73, 1988. View at Scopus
  110. S. Direkbusarakom, M. Yoshimizu, Y. Ezura, L. Ruangpan, and Y. Danayadol, “Vibrio spp., the dominant flora in shrimp hatchery against some fish pathogenic viruses,” Journal of Marine Biotechnology, vol. 6, no. 4, pp. 266–267, 1998. View at Scopus
  111. T. Botić, T. D. Klingberg, H. Weingartl, and A. Cencič, “A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria,” International Journal of Food Microbiology, vol. 115, no. 2, pp. 227–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Isolauri, “Probiotics for infectious diarrhoea,” Gut, vol. 52, no. 3, pp. 436–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. S. K. George, K. N. Kaizer, Y. M. Betz, and A. K. Dhar, “Multiplication of Taura syndrome virus in primary hemocyte culture of shrimp (Penaeus vannamei),” Journal of Virological Methods, vol. 172, no. 1-2, pp. 54–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. C. A. Otoshi, S. M. Arce, and S. M. Moss, “Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond,” Aquacultural Engineering, vol. 29, no. 3-4, pp. 93–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. Council Directive 70/524/EEC, “List of the authorized additives in feeding stuffs published in application of Article 9t of Council Directive 70/554/EEC concerning additives in feedingstuffs,” Official Journal of European Union, pp. C50–C144, 2004.