About this Journal Submit a Manuscript Table of Contents
Journal of Pathogens
Volume 2013 (2013), Article ID 965046, 29 pages
http://dx.doi.org/10.1155/2013/965046
Review Article

Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK

Received 19 June 2012; Revised 18 August 2012; Accepted 10 September 2012

Academic Editor: Cormac G. M. Gahan

Copyright © 2013 C. J. Carter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Dubey, L. M. Passos, C. Rajendran, L. R. Ferreira, S. M. Gennari, and C. Su, “Isolation of viable Toxoplasma gondii from feral guinea fowl (Numida meleagris) and domestic rabbits (Oryctolagus cuniculus) from Brazil,” Journal of Parasitology, vol. 97, no. 5, pp. 842–845, 2011. View at Publisher · View at Google Scholar
  2. M. Harfoush and A. N. Tahoon, “Seroprevalence of Toxoplasma gondii antibodies in domestic ducks, free-range chickens, turkeys and rabbits in Kafr El-Sheikh Governorate Egypt.,” Journal of the Egyptian Society of Parasitology, vol. 40, no. 2, pp. 295–302, 2010. View at Scopus
  3. S. M. Wu, S. Y. Huang, B. Q. Fu et al., “Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, Northwest China,” Parasites and Vectors, vol. 4, no. 1, p. 64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Du, Q. Zhang, Q. Yu, M. Hu, Y. Zhou, and J. Zhao, “Soil contamination of Toxoplasma gondii oocysts in pig farms in central China,” Veterinary Parasitology, vol. 187, no. 1-2, pp. 53–56, 2012. View at Publisher · View at Google Scholar
  5. D. G. C. Costa, M. F. V. Marvulo, J. S. A. Silva et al., “Seroprevalence of Toxoplasma gondii in domestic and wild animals from the Fernando de Noronha, Brazil,” Journal of Parasitology, vol. 98, no. 3, pp. 679–680, 2012. View at Publisher · View at Google Scholar
  6. E. F. Torrey and R. H. Yolken, “Toxoplasma gondii and Schizophrenia,” Emerging Infectious Diseases, vol. 9, no. 11, pp. 1375–1380, 2003. View at Scopus
  7. R. H. Yolken and E. F. Torrey, “Are some cases of psychosis caused by microbial agents? A review of the evidence,” Molecular Psychiatry, vol. 13, no. 5, pp. 470–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Horacek, J. Flegr, J. Tintera et al., “Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: voxel-based-morphometry (VBM) study,” World Journal of Biological Psychiatry, vol. 13, no. 7, pp. 501–509, 2012. View at Publisher · View at Google Scholar
  9. Y. Tedla, T. Shibre, O. Ali et al., “Serum antibodies to Toxoplasma gondii and herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: a Case-Control study,” Ethiopian Medical Journal, vol. 49, no. 3, pp. 211–220, 2011.
  10. M. W. Gror, R. H. Yolken, J. C. Xiao et al., “Prenatal depression and anxiety in Toxoplasma gondiipositive women,” American Journal of Obstetrics and Gynecology, vol. 204, no. 5, pp. 433–e1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Miman, O. Y. Kusbeci, O. C. Aktepe, and Z. Cetinkaya, “The probable relation between Toxoplasma gondii and Parkinson's disease,” Neuroscience Letters, vol. 475, no. 3, pp. 129–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Çelik, Ö. Kamili, C. Babür, M. O. Çevik, D. Öztuna, and S. Altinayar, “Is there a relationship between Toxoplasma gondii infection and idiopathic Parkinson's disease?” Scandinavian Journal of Infectious Diseases, vol. 42, no. 8, pp. 604–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Y. Kusbeci, O. Miman, M. Yaman, O. C. Aktepe, and S. Yazar, “Could Toxoplasma gondii have any role in alzheimer disease?” Alzheimer Disease and Associated Disorders, vol. 25, no. 1, pp. 1–3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Yazar, F. Arman, Ş. Yalçin, F. Demirtaş, O. Yaman, and I. Şahin, “Investigation of probable relationship between Toxoplasma gondii and cryptogenic epilepsy,” Seizure, vol. 12, no. 2, pp. 107–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Agmon-Levin, M. Ram, O. Barzilai et al., “Prevalence of hepatitis C serum antibody in autoimmune diseases,” Journal of Autoimmunity, vol. 32, no. 3-4, pp. 261–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Berkun, G. Zandman-Goddard, O. Barzilai et al., “Infectious antibodies in systemic lupus erythematosus patients,” Lupus, vol. 18, no. 13, pp. 1129–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. J. Carter, “Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii,” Schizophrenia Bulletin, vol. 35, no. 6, pp. 1163–1182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Carter, “Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes,” Journal of Pathogens, vol. 2011, Article ID 128318, 37 pages, 2011. View at Publisher · View at Google Scholar
  19. C. J. Carter, “Alzheimer's disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner,” International Journal of Alzheimer's Disease, Article ID 140539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. J. Carter, “Alzheimer's disease: APP, Gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, C. Pneumoniae, other suspect pathogens, and the immune system,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 501862, 2011. View at Publisher · View at Google Scholar
  21. C.J. Carter, “Epstein-Barr and other viral mimicry of autoantigens, myelin and vitamin D-related proteins and of EIF2B, the cause of vanishing white matter disease: massive mimicry of multiple sclerosis relevant proteins by the Synechococcus phage,” Immunopharmacology and Immunotoxicology, vol. 34, no. 1, pp. 21–35, 2012. View at Publisher · View at Google Scholar
  22. G. Alvarez, J. Aldudo, M. Alonso, S. Santana, and F. Valdivieso, “Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells,” Journal of Neuroscience Research, vol. 90, no. 5, pp. 1020–1029, 2012. View at Publisher · View at Google Scholar
  23. M. A. Wozniak, A. L. Frost, C. M. Preston, and R. F. Itzhaki, “Antivirals reduce the formation of key Alzheimer's disease molecules in cell cultures acutely infected with herpes simplex virus type 1,” PLoS ONE, vol. 6, no. 10, Article ID Article numbere25152, 2011. View at Publisher · View at Google Scholar
  24. J. Miklossy, “Alzheimer's disease-a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria,” Journal of Neuroinflammation, p. 90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tselis, “Evidence for viral etiology of multiple sclerosis,” Seminars in Neurology, vol. 31, no. 3, pp. 307–316, 2011. View at Publisher · View at Google Scholar
  26. H. H. Stibbs, “Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice,” Annals of Tropical Medicine and Parasitology, vol. 79, no. 2, pp. 153–157, 1985. View at Scopus
  27. H. Jang, D. Boltz, K. Sturm-Ramirez et al., “Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14063–14068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Henriquez, R. Brett, J. Alexander, J. Pratt, and C. W. Roberts, “Neuropsychiatric disease and Toxoplasma gondii infection,” NeuroImmunoModulation, vol. 16, no. 2, pp. 122–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Saha, D. Chant, J. Welham, and J. McGrath, “A systematic review of the prevalence of schizophrenia,” PLoS Medicine, vol. 2, no. 5, pp. 0413–0433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Fatima, M. P. Toscano, S. B. Hunter, and C. Cohen, “Controversial role of epstein-barr virus in multiple sclerosis,” Applied Immunohistochemistry and Molecular Morphology, vol. 19, no. 3, pp. 246–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. J. Marshall, J. A. Armstrong, D. B. McGechie, and R. J. Glancy, “Attempt to fulfil Koch's postulates for pyloric campylobacter,” Medical Journal of Australia, vol. 142, no. 8, pp. 436–439, 1985. View at Scopus
  32. M. Rathbone and B. Rathbone, “Helicobacter pylori and gastric cancer,” Recent Results in Cancer Research, vol. 185, pp. 83–97, 2011. View at Publisher · View at Google Scholar
  33. L. M. Brown, “Helicobacter pylori: epidemiology and routes of transmission,” Epidemiologic Reviews, vol. 22, no. 2, pp. 283–297, 2000. View at Scopus
  34. Sherris Medical Microbiology, McGraw Hill, New York, NY, USA, 2004.
  35. D. Kanduc, A. Stufano, G. Lucchese, and A. Kusalik, “Massive peptide sharing between viral and human proteomes,” Peptides, vol. 29, no. 10, pp. 1755–1766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Kanduc, “The self/nonself issue a confrontation between proteomes,” Self/Nonself, vol. 1, no. 3, pp. 255–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Kanduc, “Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes,” Biologics, vol. 4, pp. 245–261, 2010.
  38. B. Trost, G. Lucchese, A. Stufano, M. Bickis, A. Kusalik, and D. Kanduc, “No human protein is exempt from bacterial motifs, not even one,” Self/Nonself, vol. 1, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. J. Carter, “Extensive viral mimicry of 22 AIDS related autoantigens by HIV-1 proteins and KEGG pathway analysis of 561 viral/human homologues suggest an initial autoimmune component of AIDS,” FEMS Immunology & Medical Microbiology, vol. 63, no. 2, pp. 254–268, 2011.
  40. S. N. Basu, R. Kollu, and S. Banerjee-Basu, “AutDB: a gene reference resource for autism research,” Nucleic Acids Research, vol. 37, no. 1, pp. D832–D836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Piletz, X. Zhang, R. Ranade, and C. Liu, “Database of genetic studies of bipolar disorder,” Psychiatric Genetics, vol. 21, no. 2, pp. 57–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. N. C. Allen, S. Bagade, M. B. McQueen et al., “Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database,” Nature Genetics, vol. 40, no. 7, pp. 827–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi, “Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database,” Nature Genetics, vol. 39, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. C. M. Lill, J. T. Roehr, M. B. McQueen, et al., “Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database,” PLOS Genetics, vol. 8, no. 3, Article ID e1002548, 2012. View at Publisher · View at Google Scholar
  45. C. M. Lill, M. B. McQueen, J. T. Roehr, et al., The MSGene Database. Alzheimer Research Forum, http://www.msgene.org/MsGene, 2010.
  46. L. A. Hindorff, P. Sethupathy, H. A. Junkins, et al., A Catalog of Published Genome-Wide Association Studies, http://www.genome.gov/gwastudies/, Genome. Gov, 2010.
  47. S. Goto, H. Bono, H. Ogata et al., “Organizing and computing metabolic pathway data in terms of binary relations.,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 175–186, 1997. View at Scopus
  48. A. Kamburov, K. Pentchev, H. Galicka, C. Wierling, H. Lehrach, and R. Herwig, “ConsensusPathDB: toward a more complete picture of cell biology,” Nucleic Acids Research, vol. 39, no. 1, pp. D712–D717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. Oliveros, “VENNY. An interactive tool for comparing lists with Venn Diagrams, Website,” 2007.
  50. M. M. Freshman, T. C. Merigan, J. S. Remington, and I. E. Brownlee, “In vitro and in vivo antiviral action of an interferon-like substance induced by Toxoplasma gondii,” Proceedings of the Society for Experimental Biology and Medicine, vol. 123, no. 3, pp. 862–866, 1966. View at Scopus
  51. A. Benson, R. Pifer, C. L. Behrendt, L. V. Hooper, and F. Yarovinsky, “Gut commensal bacteria direct a protective immune response against Toxoplasma gondii,” Cell Host and Microbe, vol. 6, no. 2, pp. 187–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Vittecoq, E. Elguero, K. D. Lafferty et al., “Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France,” Infection, Genetics and Evolution, vol. 12, no. 2, pp. 496–498, 2012. View at Publisher · View at Google Scholar
  53. J. O. Kim, S. S. Jung, S. Y. Kim et al., “Inhibition of Lewis lung carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and inhibition of angiogenesis,” Journal of Korean Medical Science, vol. 22, supplement 1, pp. S38–S46, 2007. View at Scopus
  54. I. Noel, A. H. Balfour, and M. H. Wilcox, “Toxoplasma infection and systemic lupus erythematosus: analysis of the serological response by immunoblotting,” Journal of Clinical Pathology, vol. 46, no. 7, pp. 628–632, 1993. View at Scopus
  55. L. Francis and A. Perl, “Infection in systemic lupus erythematosus: friend or foe?” International Journal of Clinical Rheumatology, vol. 5, no. 1, pp. 59–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Chen, F. Aosai, K. Norose et al., “Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand Black x New Zealand White) F1 mice,” International Immunology, vol. 16, no. 7, pp. 937–946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Flegr and I. Striz, “Potential immunomodulatory effects of latent toxoplasmosis in humans,” BMC Infectious Diseases, vol. 11, p. 274, 2011. View at Publisher · View at Google Scholar
  58. S. Arora, P. A. Jenum, P. Aukrust et al., “Pre-transplant Toxoplasma gondii seropositivity among heart transplant recipients is associated with an increased risk of all-cause and cardiac mortality,” Journal of the American College of Cardiology, vol. 50, no. 20, pp. 1967–1972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S. D. Iglezias, L. A. Benvenuti, F. Calabrese et al., “Endomyocardial fibrosis: pathological and molecular findings of surgically resected ventricular endomyocardium,” Virchows Archiv, vol. 453, no. 3, pp. 233–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. E. Azab, S. F. el-Shennawy, M. el Hady, and M. H. Bahgat, “Estimation of Toxoplasma gondii antibodies in patients with cardiomyopathy.,” Journal of the Egyptian Society of Parasitology, vol. 22, no. 3, pp. 591–597, 1992. View at Scopus
  61. H. S. Rosenberg, “Cardiovascular effects of congenital infections.,” The American journal of cardiovascular pathology, vol. 1, no. 2, pp. 147–156, 1987. View at Scopus
  62. A. O. Falase, G. A. Sekoni, and A. D. Adenle, “Dilated cardiomyopathy in young adult Africans: a sequel to infections?” African Journal of Medicine and Medical Sciences, vol. 11, no. 1, pp. 1–5, 1982. View at Scopus
  63. N. M. Alcantara-Neves, R. V. Veiga, V. C. Dattoli et al., “The effect of single and multiple infections on atopy and wheezing in children,” The Journal of Allergy and Clinical Immunology, vol. 129, no. 2, pp. 359–367, 2012. View at Publisher · View at Google Scholar
  64. C. Janson, H. Asbjornsdottir, A. Birgisdottir et al., “The effect of infectious burden on the prevalence of atopy and respiratory allergies in Iceland, Estonia, and Sweden,” Journal of Allergy and Clinical Immunology, vol. 120, no. 3, pp. 673–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Birgisdóttir, H. Asbjörnsdottir, E. Cook et al., “Seroprevalence of Toxoplasma gondii in Sweden, Estonia and Iceland,” Scandinavian Journal of Infectious Diseases, vol. 38, no. 8, pp. 625–631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Sansone and J. Bromberg, “Targeting the interleukin-6/Jak/stat pathway in human malignancies,” Journal of Clinical Oncology, vol. 30, no. 9, pp. 1005–1014, 2012. View at Publisher · View at Google Scholar
  67. P. Liao and T. W. Soong, “CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency,” Pflugers Archiv European Journal of Physiology, vol. 460, no. 2, pp. 353–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. M. Kullmann, “Neurological channelopathies,” Annual Review of Neuroscience, vol. 33, pp. 151–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Pezzella, A. Bouchot, A. Bonhomme et al., “Involvement of calcium and calmodulin in Toxoplasma gondii tachyzoite invasion,” European Journal of Cell Biology, vol. 74, no. 1, pp. 92–101, 1997. View at Scopus
  70. H. O. Song, M. H. Ahn, J. S. Ryu, D. Y. Min, K. H. Joo, and Y. H. Lee, “Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii,” The Korean journal of parasitology, vol. 42, no. 4, pp. 185–193, 2004. View at Scopus
  71. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Activation of the classical complement pathway in brain tissue of Alzheimer patients,” Neuroscience Letters, vol. 107, no. 1–3, pp. 341–346, 1989. View at Publisher · View at Google Scholar · View at Scopus
  73. A. N. Hegde and S. C. Upadhya, “Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease,” Biochimica et Biophysica Acta, vol. 1809, no. 2, pp. 128–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Newbern and C. Birchmeier, “Nrg1/ErbB signaling networks in Schwann cell development and myelination,” Seminars in Cell and Developmental Biology, vol. 21, no. 9, pp. 922–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. C. J. Carter, “EIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia?” Schizophrenia Bulletin, vol. 33, no. 6, pp. 1343–1353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. O. Dean, F. Giorlando, and M. Berk, “N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action,” Journal of Psychiatry and Neuroscience, vol. 36, no. 2, pp. 78–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Bulut, H. A. Savas, A. Altindag, O. Virit, and A. Dalkilic, “Beneficial effects of N-acetylcysteine in treatment resistant schizophrenia,” World Journal of Biological Psychiatry, vol. 10, no. 4, pp. 626–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Berk, F. Ng, O. Dean, S. Dodd, and A. I. Bush, “Glutathione: a novel treatment target in psychiatry,” Trends in Pharmacological Sciences, vol. 29, no. 7, pp. 346–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Berk, O. Dean, S. M. Cotton et al., “The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial,” Journal of Affective Disorders, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Y. Hardan, L. K. Fung, R. A. Libove et al., “A randomized controlled pilot trial of oral N-acetylcysteine in children with autism,” Biological Psychiatry, vol. 71, no. 11, pp. 956–961, 2012. View at Publisher · View at Google Scholar
  81. E. F. Torrey, J. J. Bartko, and R. H. Yolken, “Toxoplasma gondii and other risk factors for Schizophrenia: an update,” Schizophrenia Bulletin, vol. 38, no. 3, pp. 642–647, 2012. View at Publisher · View at Google Scholar
  82. I. Arias, A. Sorlozano, E. Villegas et al., “Infectious agents associated with schizophrenia: a meta-analysis,” Schizophrenia Research, vol. 136, no. 1, pp. 128–136, 2012. View at Publisher · View at Google Scholar
  83. S. Kamerkar and P. H. Davis, “Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection,” Journal of Parasitology Research, vol. 2012, Article ID 589295, 10 pages, 2012. View at Publisher · View at Google Scholar
  84. J. Gatkowska, M. Wieczorek, B. Dziadek, K. Dzitko, and H. Dlugonska, “Behavioral changes in mice caused by Toxoplasma gondii invasion of brain,” Parasitology Research, vol. 111, no. 1, pp. 53–58, 2012. View at Publisher · View at Google Scholar
  85. S. Bech-Nielsen, “Toxoplasma gondii associated behavioural changes in mice, rats and humans: evidence from current research,” Preventive Veterinary Medicine, vol. 103, no. 1, pp. 78–79, 2012. View at Publisher · View at Google Scholar
  86. E. Prandovszky, E. Gaskell, H. Martin, J. P. Dubey, J. P. Webster, and G. A. McConkey, “The neurotropic parasite Toxoplasma gondii increases dopamine metabolism,” PLoS ONE, vol. 6, no. 9, Article ID e23866, 2011.
  87. A. Paparelli, M. Di Forti, P. D. Morrison, and R. M. Murray, “Drug-induced psychosis: how to avoid star gazing in schizophrenia research by looking at more obvious sources of light,” Frontiers in Behavioral Neuroscience, vol. 5, p. 1, 2011.
  88. J. S. Strobl, D. G. Goodwin, B. A. Rzigalinski, and D. S. Lindsay, “Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures,” Journal of Parasitology, vol. 98, no. 6, pp. 1296–1299, 2012. View at Publisher · View at Google Scholar
  89. M. Kunz, K. M. Ceresér, P. D. Goi et al., “Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance,” Revista Brasileira de Psiquiatria, vol. 33, no. 3, pp. 268–274, 2011. View at Publisher · View at Google Scholar
  90. V. Pizza, A. Agresta, C. W. ĎAcunto, M. Festa, and A. Capasso, “Neuroinflamm-aging and neurodegenerative diseases: an overview,” CNS and Neurological Disorders, vol. 10, no. 5, pp. 621–634, 2011. View at Scopus
  91. J. J. Hoarau, P. Krejbich-Trotot, M. C. Jaffar-Bandjee et al., “Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg),” CNS & neurological disorders drug targets, vol. 10, no. 1, pp. 25–43, 2011. View at Scopus
  92. O. M. Dean, M. van den Buuse, A. I. Bush et al., “Role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice,” Current Medicinal Chemistry, vol. 16, no. 23, pp. 2965–2976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Lassmann, “Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer's disease,” Journal of Neural Transmission, vol. 118, no. 5, pp. 747–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. C. J. Carter, “Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability,” Schizophrenia Research, vol. 86, no. 1–3, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. C. J. Carter, “Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability,” Neurochemistry International, vol. 50, no. 3, pp. 461–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Hardy, “Has the amyloid cascade hypothesis for Alzheimer's disease been proved?” Current Alzheimer Research, vol. 3, no. 1, pp. 71–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. J. Carter, “Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis,” Neurochemistry International, vol. 50, no. 1, pp. 12–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Eikelenboom, R. Veerhuis, E. van Exel, J. J. M. Hoozemans, A. J. M. Rozemuller, and W. A. van Gool, “The early involvement of the innate immunity in the pathogenesis of lateonset Alzheimer's disease: neuropathological, epidemiological and genetic evidence,” Current Alzheimer Research, vol. 8, no. 2, pp. 142–150, 2011. View at Scopus
  99. A. Rosello, G. Warnes, and U. C. Meier, “Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die—that is the question,” Clinical & Experimental Immunology, vol. 168, no. 1, pp. 52–57, 2012. View at Publisher · View at Google Scholar
  100. D. A. T. Nijholt, L. De Kimpe, H. L. Elfrink, J. J. M. Hoozemans, and W. Scheper, “Removing protein aggregates: the role of proteolysis in neurodegeneration,” Current Medicinal Chemistry, vol. 18, no. 16, pp. 2459–2476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. P. Corvin, “Neuronal cell adhesion genes: key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders?” Cell Adhesion and Migration, vol. 4, no. 4, pp. 511–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Y. T. Cherlyn, P. S. Woon, J. J. Liu, W. Y. Ong, G. C. Tsai, and K. Sim, “Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 6, pp. 958–977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Herman, T. Hougland, and R. S. El-Mallakh, “Mimicking human bipolar ion dysregulation models mania in rats,” Neuroscience and Biobehavioral Reviews, vol. 31, no. 6, pp. 874–881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Vass, “Current immune therapies of autoimmune disease of the nervous system with special emphasis to multiple sclerosis,” Current Pharmaceutical Design, vol. 18, no. 29, pp. 4513–4517, 2012. View at Publisher · View at Google Scholar
  105. C. Selmi, E. Mix, and U. K. Zettl, “A clear look at the neuroimmunology of multiple sclerosis and beyond,” Autoimmunity Reviews, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Washino, M. Moroda, Y. Iwakura, and F. Aosai, “Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice,” Infection and Immunity, vol. 80, no. 4, pp. 1437–1444, 2012. View at Publisher · View at Google Scholar
  107. D. Arsenijevic, F. de Bilbao, P. Vallet et al., “Decreased infarct size after focal cerebral ischemia in mice chronically infected with Toxoplasma gondii,” Neuroscience, vol. 150, no. 3, pp. 537–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. D. E. Elliott and J. V. Weinstock, “Helminth-host immunological interactions: prevention and control of immune-mediated diseases,” Annals of the New York Academy of Sciences, vol. 1247, no. 1, pp. 83–96, 2012. View at Publisher · View at Google Scholar
  109. J. H. Kim, K. I. Kang, W. C. Kang et al., “Porcine abortion outbreak associated with Toxoplasma gondii in Jeju Island, Korea,” Journal of Veterinary Science, vol. 10, no. 2, pp. 147–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. M. Nishi, N. Kasai, and S. M. Gennari, “Antibody levels in goats fed Toxoplasma gondii oocysts,” Journal of Parasitology, vol. 87, no. 2, pp. 445–447, 2001. View at Scopus
  111. D. Arsenijevic, L. Girardier, J. Seydoux, H. R. Chang, and A. G. Dulloo, “Altered energy balance and cytokine gene expression in a murine model of chronic infection with Toxoplasma gondii,” American Journal of Physiology, vol. 272, no. 5, pp. E908–E917, 1997. View at Scopus
  112. D. E. Barnes and K. Yaffe, “The projected effect of risk factor reduction on Alzheimer's disease prevalence,” The Lancet Neurology, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. G. M. Sargent, L. S. Pilotto, and L. A. Baur, “Components of primary care interventions to treat childhood overweight and obesity: a systematic review of effect,” Obesity Reviews, vol. 12, no. 501, pp. e219–e235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Sanderson, G. C. Patton, C. McKercher, T. Dwyer, and A. J. Venn, “Overweight and obesity in childhood and risk of mental disorder: a 20-year cohort study,” Australian and New Zealand Journal of Psychiatry, vol. 45, no. 5, pp. 384–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Pacifico, V. Nobili, C. Anania, P. Verdecchia, and C. Chiesa, “Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk,” World Journal of Gastroenterology, vol. 17, no. 26, pp. 3082–3091, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Reinehr and R. Wunsch, “Intima media thickness-related risk factors in childhood obesity,” International Journal of Pediatric Obesity, vol. 6, supplement 1, pp. 46–52, 2011. View at Publisher · View at Google Scholar
  117. M. Juonala, C. G. Magnussen, A. Venn et al., “Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the cardiovascular risk in young finns study, the childhood determinants of adult health study, the bogalusa heart study, and the muscatine study for the international childhood cardiovascular cohort (i3C) consortium,” Circulation, vol. 122, no. 24, pp. 2514–2520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Virdis, S. Ghiadoni, S. Masi et al., “Obesity in the childhood: a link to adult hypertension,” Current Pharmaceutical Design, vol. 15, no. 10, pp. 1063–1071, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. F. Fava, R. Gitau, B. A. Griffin, G. R. Gibson, K. M. Tuohy, and J. A. Lovegrove, “The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population,” International Journal of Obesity. In press.
  120. R. Burcelin, L. Garidou, and C. Pomie, “Immuno-microbiota cross and talk: the new paradigm of metabolic diseases,” Seminars in Immunology, vol. 24, no. 1, pp. 67–74, 2012. View at Publisher · View at Google Scholar
  121. S. Schwartz, I. Friedberg, I. V. Ivanov et al., “A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response,” Genome Biology, vol. 13, no. 4, Article ID r32, 2012. View at Publisher · View at Google Scholar
  122. Y. Nishikawa, F. Quittnat, T. T. Stedman et al., “Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma,” Cellular Microbiology, vol. 7, no. 6, pp. 849–867, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. L. R. Portugal, L. R. Fernandes, V. S. Pietra Pedroso, H. C. Santiago, R. T. Gazzinelli, and J. I. Alvarez-Leite, “Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection,” Microbes and Infection, vol. 10, no. 3, pp. 276–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Hay, P. P. Aitken, and M. A. Arnott, “The influence of congenital Toxoplasma infection on the spontaneous running activity of mice,” Zeitschrift fur Parasitenkunde, vol. 71, no. 4, pp. 459–462, 1985. View at Scopus
  125. C. Afonso, V. B. Paixao, and R. M. Costa, “Chronic toxoplasma infection modifies the structure and the risk of host behavior,” PLoS ONE, vol. 7, no. 3, Article ID e32489, 2012. View at Publisher · View at Google Scholar
  126. M. Gulinello, M. Acquarone, J. H. Kim et al., “Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology,” Microbes and Infection, vol. 12, no. 7, pp. 528–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. R. J. Deckelbaum and C. Torrejon, “The omega-3 fatty acid nutritional landscape: health benefits and sources,” Journal of Nutrition, vol. 142, supplement 3, pp. 587S–591S, 2012. View at Publisher · View at Google Scholar
  128. B. S. Connolly, A. S. J. Feigenbaum, B. H. Robinson, A. I. Dipchand, D. K. Simon, and M. A. Tarnopolsky, “MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation,” Biochemical and Biophysical Research Communications, vol. 402, no. 2, pp. 443–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. I. Splawski, K. W. Timothy, L. M. Sharpe et al., “CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism,” Cell, vol. 119, no. 1, pp. 19–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. P. Burusnukul, E. C. de los Reyes, J. Yinger, and D. R. Boué, “Danon disease: an unusual presentation of Autism,” Pediatric Neurology, vol. 39, no. 1, pp. 52–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Ye, J. Liu, and J. Y. Wu, “Cell adhesion molecules and their involvement in autism spectrum disorder,” NeuroSignals, vol. 18, no. 2, pp. 62–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. G. Laviola, E. Ognibene, E. Romano, W. Adriani, and F. Keller, “Gene-environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 4, pp. 560–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Emanuele, P. Orsi, F. Barale, S. U. di Nemi, M. Bertona, and P. Politi, “Serum levels of vascular endothelial growth factor and its receptors in patients with severe autism,” Clinical Biochemistry, vol. 43, no. 3, pp. 317–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. N. Kar and B. Misra, “Toxoplasma seropositivity and depression: a case report,” BMC Psychiatry, vol. 4, p. 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. T. A. Arling, R. H. Yolken, M. Lapidus et al., “Toxoplasma gondii antibody titers and history of suicide attempts in patients with recurrent mood disorders,” Journal of Nervous and Mental Disease, vol. 197, no. 12, pp. 905–908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. J. R. Walker, L. A. Graff, J. P. Dutz, and C. N. Bernstein, “Psychiatric disorders in patients with immune-mediated inflammatory diseases: prevalence, association with disease activity, and overall patient well-being,” Journal of Rheumatology, vol. 38, supplement 88, pp. 31–35, 2011. View at Publisher · View at Google Scholar
  137. J. E. Rosenfeld, “Emotional and psychiatric issues in hypertrophic cardiomyopathy and other cardiac patients,” Anadolu Kardiyoloji Dergisi, vol. 6, supplement 2, pp. 5–8, 2006. View at Scopus
  138. F. Caraci, A. Copani, F. Nicoletti, and F. Drago, “Depression and Alzheimer's disease: neurobiological links and common pharmacological targets,” European Journal of Pharmacology, vol. 626, no. 1, pp. 64–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. M. M. Nowacka and E. Obuchowicz, “Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action,” Neuropeptides, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. K. Kim, K. S. Na, K. H. Shin, H. Y. Jung, S. H. Choi, and J. B. Kim, “Cytokine imbalance in the pathophysiology of major depressive disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 5, pp. 1044–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. A. N. Coogan and J. Thome, “Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms,” World Journal of Biological Psychiatry, vol. 12, supplement 1, pp. 40–43, 2011. View at Publisher · View at Google Scholar
  142. E. F. Stone, B. O. Fulton, J. S. Ayres, L. N. Pham, J. Ziauddin, and M. M. Shirasu-Hiza, “The circadian clock protein timeless regulates phagocytosis of bacteria in Drosophila,” PLoS Pathogens, vol. 8, no. 1, Article ID e1002445, 2012. View at Publisher · View at Google Scholar
  143. R. W. Logan and D. K. Sarkar, “Circadian nature of immune function,” Molecular and Cellular Endocrinology, vol. 349, no. 1, pp. 82–90, 2012. View at Publisher · View at Google Scholar
  144. M. M. Perica and I. Delaš, “Essential fatty acids and psychiatric disorders,” Nutrition in Clinical Practice, vol. 26, no. 4, pp. 409–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. G. M. Lin, Y. J. Chen, D. J. Kuo et al., “Cancer incidence in patients with Schizophrenia or Bipolar disorder: a nationwide population-based study in Taiwan, 1997–2009,” Schizophrenia Bulletin. In press.
  146. B. Cooper and C. Holmes, “Previous psychiatric history as a risk factor for late-life dementia: a population-based case-control study,” Age and Ageing, vol. 27, no. 2, pp. 181–188, 1998. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Xekardaki, P. Giannakopoulos, and S. Haller, “White matter changes in Bipolar disorder, Alzheimer disease, and mild cognitive impairment: new insights from DTI,” Journal of Aging Research, vol. 2011, Article ID 286564, 10 pages, 2011. View at Publisher · View at Google Scholar
  148. G. Bartzokis, “Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments,” Neuropharmacology, vol. 62, no. 7, pp. 2136–2152, 2012. View at Publisher · View at Google Scholar
  149. C. J. Carter, “EIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia?” Schizophrenia Bulletin, vol. 33, no. 6, pp. 1343–1353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. A. S. Brown, “The environment and susceptibility to schizophrenia,” Progress in Neurobiology, vol. 93, no. 1, pp. 23–58, 2011. View at Publisher · View at Google Scholar
  151. P. B. Mortensen, B. Nørgaard-Pedersen, B. L. Waltoft, T. L. Sørensen, D. Hougaard, and R. H. Yolken, “Early infections of Toxoplasma gondii and the later development of schizophrenia,” Schizophrenia Bulletin, vol. 33, no. 3, pp. 741–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. E. F. Torrey, J. J. Bartko, Z. R. Lun, and R. H. Yolken, “Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis,” Schizophrenia Bulletin, vol. 33, no. 3, pp. 729–736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. S.-J. Chen, Y.-L. Chao, C.-Y. Chen et al., “Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study,” British Journal of Psychiatry, vol. 200, no. 5, pp. 374–380, 2012. View at Publisher · View at Google Scholar
  154. M. S. Pedersen, M. E. Benros, E. Agerbo, A. D. Børglum, and P. B. Mortensen, “Schizophrenia in patients with atopic disorders with particular emphasis on asthma: a Danish population-based study,” Schizophrenia Research, vol. 138, no. 1, pp. 58–62, 2012. View at Publisher · View at Google Scholar
  155. E. G. Severance, A. Alaedini, S. Yang et al., “Gastrointestinal inflammation and associated immune activation in schizophrenia,” Schizophrenia Research, vol. 138, no. 1, pp. 48–53, 2012. View at Publisher · View at Google Scholar
  156. F. Dickerson, C. Stallings, C. Vaughan et al., “Artemisinin reduces the level of antibodies to gliadin in schizophrenia,” Schizophrenia Research, vol. 129, no. 2-3, pp. 196–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. J. R. Jackson, W. W. Eaton, N. G. Cascella, A. Fasano, and D. L. Kelly, “Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity,” Psychiatric Quarterly, vol. 83, no. 1, pp. 91–102, 2012. View at Publisher · View at Google Scholar
  158. D. L. Wesche, M. A. DeCoster, F. C. Tortella, and T. G. Brewer, “Neurotoxicity of artemisinin analogs in vitro,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 8, pp. 1813–1819, 1994. View at Scopus
  159. G. Schmuck, E. Roehrdanz, R. K. Haynes, and R. Kahl, “Neurotoxic mode of action of artemisinin,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 3, pp. 821–827, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. B. García-Bueno, B. G. Pérez-Nievas, and J. C. Leza, “Is there a role for the nuclear receptor PPARγ in neuropsychiatric diseases?” International Journal of Neuropsychopharmacology, vol. 13, no. 10, pp. 1411–1429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Melis, S. Carta, L. Fattore et al., “Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors,” Biological Psychiatry, vol. 68, no. 3, pp. 256–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. T. F. Outeiro, J. Klucken, K. Bercury et al., “Dopamine-induced conformational changes in alpha-synuclein.,” PloS one, vol. 4, no. 9, p. e6906, 2009. View at Scopus
  163. J. A. Driver, A. Beiser, R. Au et al., “Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study.,” British Medical Journal, vol. 344, p. e1442, 2012. View at Publisher · View at Google Scholar
  164. M. Habek, D. Ozretić, K. Žarković, V. Djaković, and Z. Mubrin, “Unusual cause of dementia in an immunocompetent host: toxoplasmic encephalitis,” Neurological Sciences, vol. 30, no. 1, pp. 45–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Freidel, C. Martin-Sölch, and U. Schreiter-Gasser, “Alzheimer's dementia or cerebral toxoplasmosis? Case study of dementia following toxoplasmosis infection,” Nervenarzt, vol. 73, no. 9, pp. 874–878, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. R. K. Sodhi, N. Singh, and A. S. Jaggi, “Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer's disease,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 384, no. 2, pp. 115–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. I. Björkhem, S. Meaney, and A. M. Fogelman, “Brain cholesterol: long secret life behind a barrier,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 5, pp. 806–815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. C. S. Little, C. J. Hammond, A. MacIntyre, B. J. Balin, and D. M. Appelt, “Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice,” Neurobiology of Aging, vol. 25, no. 4, pp. 419–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. M. A. Wozniak, R. F. Itzhaki, S. J. Shipley, and C. B. Dobson, “Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation,” Neuroscience Letters, vol. 429, no. 2-3, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. S. J. Soscia, J. E. Kirby, K. J. Washicosky et al., “The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide,” PLoS ONE, vol. 5, no. 3, Article ID e9505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. W. J. Lukiw, J. G. Cui, L. Y. Yuan et al., “Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells,” NeuroReport, vol. 21, no. 14, pp. 922–927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. B.-K. Jung, K.-H. Pyo, K. Y. Shin et al., “Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of alzheimer's disease,” PLoS ONE, vol. 7, no. 3, Article ID Article numbere33312, 2012. View at Publisher · View at Google Scholar
  173. Y. Nishikawa, H. M. Ibrahim, K. Kameyama, I. Shiga, J. Hiasa, and X. Xuan, “Host cholesterol synthesis contributes to growth of intracellular Toxoplasma gondii in macrophages,” Journal of Veterinary Medical Science, vol. 73, no. 5, pp. 633–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. M. Bergkvist and M. Sandberg-Wollheim, “Serological differences in monozygotic twin pairs discordant for multiple sclerosis,” Acta Neurologica Scandinavica, vol. 104, no. 5, pp. 262–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  175. B. G. Brinkmann, A. Agarwal, M. W. Sereda et al., “Neuregulin-1/ErbB Signaling Serves Distinct Functions in Myelination of the Peripheral and Central Nervous System,” Neuron, vol. 59, no. 4, pp. 581–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Li, C. A. Ghiani, Y. K. Jin et al., “Inhibition of p53 transcriptional activity: a potential target for future development of therapeutic strategies for primary demyelination,” Journal of Neuroscience, vol. 28, no. 24, pp. 6118–6127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. A. D. Proal, P. J. Albert, and T. Marshall, “Autoimmune disease in the era of the metagenome,” Autoimmunity Reviews, vol. 8, no. 8, pp. 677–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. X. Gao and Y. Ning, “Cancer and Parkinson's disease: the odd couple,” Drugs of Today, vol. 47, no. 3, pp. 215–222, 2011. View at Publisher · View at Google Scholar
  179. S. L. Bavaro, M. Calabrò, and D. Kanduc, “Pentapeptide sharing between Corynebacterium diphtheria toxin and the human neural protein network,” Immunopharmacology and Immunotoxicology, vol. 33, no. 2, pp. 360–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. G. Lucchese, A. Stufano, M. Calabro, and D. Kanduc, “Charting the peptide crossreactome between HIV-1 and the human proteome.,” Frontiers in Bioscience, vol. 3, pp. 1385–1400, 2011.
  181. G. Capone, G. Novello, S. L. Bavaro et al., “A qualitative description of the peptide sharing between poliovirus and Homo sapiens,” Immunotoxicology, vol. 34, no. 5, Article ID 089239, pp. 779–785, 2012. View at Publisher · View at Google Scholar
  182. J. G. Sinkovics, “Horizontal gene transfers with or without cell fusions in all categories of the living matter,” Advances in Experimental Medicine and Biology, vol. 950, pp. 5–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. M. Horie, T. Honda, Y. Suzuki et al., “Endogenous non-retroviral RNA virus elements in mammalian genomes,” Nature, vol. 463, no. 7277, pp. 84–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. H. Liu, Y. Fu, D. Jiang et al., “Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes,” Journal of Virology, vol. 84, no. 22, pp. 11876–11887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Katzourakis and R. J. Gifford, “Endogenous viral elements in animal genomes,” PLoS Genetics, vol. 6, no. 11, Article ID e1001191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Gilbert, S. Schaack, J. K. Pace II, P. J. Brindley, and C. Feschotte, “A role for host-parasite interactions in the horizontal transfer of transposons across phyla,” Nature, vol. 464, no. 7293, pp. 1347–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. D. Kanduc, “Potential cross-reactivity between hPV16 L1 protein and sudden death-associated antigens,” Journal of Experimental Therapeutics and Oncology, vol. 9, no. 2, pp. 159–165, 2011. View at Scopus
  188. E. Nagele, M. Han, C. DeMarshall, B. Belinka, and R. Nagele, “Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera,” PLoS ONE, vol. 6, no. 8, Article ID e23112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. E. Nagele, M. Han, C. DeMarshall, B. Belinka, and R. Nagele, “Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera,” PLoS ONE, vol. 6, no. 8, Article ID e23112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. E. M. Cameron, S. Spencer, J. Lazarini et al., “Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis,” Journal of Neuroimmunology, vol. 213, no. 1-2, pp. 123–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. K. S. Anderson, S. Sibani, G. Wallstrom et al., “Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer,” Journal of Proteome Research, vol. 10, no. 1, pp. 85–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. L. Wu, W. Chang, J. Zhao et al., “Development of autoantibody signatures as novel diagnostic biomarkers of non-small cell lung cancer,” Clinical Cancer Research, vol. 16, no. 14, pp. 3760–3768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. D. Male, J. Brostoff, D. Roth, and I. Roitt, Immunology, Elsevier, New York, NY, USA, 2010.
  194. J. N. Baraniuk, “Xenotropic murine leukemia virus-related virus in chronic fatigue syndrome and prostate cancer,” Current Allergy and Asthma Reports, vol. 10, no. 3, pp. 210–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. V. C. Lombardi, F. W. Ruscetti, J. D. Gupta et al., “Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome,” Science, vol. 326, no. 5952, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. E. Dolgin, “Chronic controversy continues over mysterious XMRV virus,” Nature Medicine, vol. 16, no. 8, p. 832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Urisman, R. J. Molinaro, N. Fischer et al., “Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant,” PLoS Pathogens, vol. 2, no. 3, pp. 0211–0225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. P. Birner, B. Gatterbauer, D. Drobna, and H. Bernheimer, “Molecular mimicry in infectious encephalitis and neuritis: binding of antibodies against infectious agents on Western blots of human nervous tissue,” Journal of Infection, vol. 41, no. 1, pp. 32–38, 2000. View at Publisher · View at Google Scholar · View at Scopus
  199. G. Baravalle, M. Brabec, L. Snyers, D. Blaas, and R. Fuchs, “Human Rhinovirus Type 2-Antibody Complexes Enter and Infect Cells via Fc-γ Receptor IIB1,” Journal of Virology, vol. 78, no. 6, pp. 2729–2737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. W. M. Pardridge, “Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses,” Bioconjugate Chemistry, vol. 19, no. 7, pp. 1327–1338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. Y. Zhou and J.D. Marks, “Discovery of internalizing antibodies to tumor antigens from phage libraries,” Methods in Enzymology, vol. 502, pp. 43–66, 2012. View at Publisher · View at Google Scholar
  202. S. Capsoni, G. Ugolini, A. Comparini, F. Ruberti, N. Berardi, and A. Cattaneo, “Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6826–6831, 2000. View at Publisher · View at Google Scholar · View at Scopus
  203. F. Cardoso, “Sydenham's chorea,” Handbook of Clinical Neurology, vol. 100, pp. 221–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  204. P. Pavone, E. Parano, R. Rizzo, and R. R. Trifiletti, “Autoimmune neuropsychiatric disorders associated with streptococcal infection: sydenham chorea, PANDAS, and PANDAS variants,” Journal of Child Neurology, vol. 21, no. 9, pp. 727–736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  205. H. B. D. Kettlewell, “Selection experimants on industrial melanism in the Lepidoptera,” Heredity, vol. 9, pp. 323–342, 1955. View at Publisher · View at Google Scholar
  206. C. J. Patel, R. Chen, and A. J. Butte, “Data-driven integration of epidemiological and toxicological data to select candidate interacting genes and environmental factors in association with disease,” Bioinformatics, vol. 28, no. 12, Article ID Article numberbts229, pp. i121–i126, 2012. View at Publisher · View at Google Scholar
  207. L. Desbonnet, J. L. Waddington, and C. M. P. O'Tuathaigh, “Mutant models for genes associated with schizophrenia,” Biochemical Society Transactions, vol. 37, no. 1, pp. 308–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. H. Nawa and K. Yamada, “Experimental schizophrenia models in rodents established with inflammatory agents and cytokines,” Methods in Molecular Biology, vol. 829, pp. 445–451, 2012. View at Publisher · View at Google Scholar
  209. G. Pacheco-Lopez, S. Giovanoli, W. Langhans, and U. Meyer, “Priming of metabolic dysfunctions by prenatal immune activation in mice: relevance to Schizophrenia,” Schizophrenia Bulletin. In press.
  210. O. Zerbo, A.-M. Iosif, C. Walker, S. Ozonoff, R. L. Hansen, and I. Hertz-Picciotto, “Is maternal influenza or fever during pregnancy associated with Autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) Study,” Journal of Autism and Developmental Disorders, vol. 43, no. 1, pp. 25–33, 2013. View at Publisher · View at Google Scholar
  211. E. Fuller Torrey, R. Rawlings, and R. H. Yolken, “The antecedents of psychoses: a case-control study of selected risk factors,” Schizophrenia Research, vol. 46, no. 1, pp. 17–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  212. Stigma and Mental Illness, American Psychiatric Press, Arlington, Va, USA, 1992.