Abstract

We propose a criterion to estimate the regression function by means of a nonparametric and fuzzy set estimator of the Nadaraya-Watson type, for independent pairs of data, obtaining a reduction of the integrated mean square error of the fuzzy set estimator regarding the integrated mean square error of the classic kernel estimators. This reduction shows that the fuzzy set estimator has better performance than the kernel estimations. Also, the convergence rate of the optimal scaling factor is computed, which coincides with the convergence rate in classic kernel estimation. Finally, these theoretical findings are illustrated using a numerical example.

1. Introduction

The methods of kernel estimation are among the nonparametric methods commonly used to estimate the regression function π‘Ÿ, with independent pairs of data. Nevertheless, through the theory of point processes (see e.g, Reiss [1]) we can obtain a new nonparametric estimation method, which is based on defining a nonparametric estimator of the Nadaraya-Watson type regression function, for independent pairs of data, by means of a fuzzy set estimator of the density function. The method of fuzzy set estimation introduced by Falk and Liese [2] is based on defining a fuzzy set estimator of the density function by means of thinned point processes (see e.g, Reiss [1], Section 2.4); a process framed inside the theory of the point processes, which is given by the following: Μ‚πœƒπ‘›=1π‘›π‘Žπ‘›π‘›ξ“π‘–=1π‘ˆπ‘–,(1.1) where π‘Žπ‘›>0 is a scaling factor (or bandwidth) such that π‘Žπ‘›β†’0 as π‘›β†’βˆž, and the random variables π‘ˆπ‘–, 1≀𝑖≀𝑛, are independent with values in {0,1}, which decides whether 𝑋𝑖 belongs to the neighborhood of π‘₯0 or not. Here π‘₯0 is the point of estimation (for more details, see Falk and Liese [2]). On the other hand, we observe that the random variables that define the estimator Μ‚πœƒπ‘› do not possess, for example, precise functional characteristics in regards to the point of estimation. This absence of functional characteristics complicates the evaluation of the estimator Μ‚πœƒπ‘› using a sample, as well as the evaluation of the fuzzy set estimator of the regression function if it is defined in terms of Μ‚πœƒπ‘›.

The method of fuzzy set estimation of the regression function introduced by Fajardo et al. [3] is based on defining a fuzzy set estimator of the Nadaraya-Watson type, for independent pairs of data, in terms of the fuzzy set estimator of the density function introduced in Fajardo et al. [4]. Moreover, the regression function is estimated by means of an average fuzzy set estimator considering pairs of fixed data, which is a particular case if we consider independent pairs of nonfixed data. Note that the statements made in Section 4 in Fajardo et al. [3] are satisfied if independent pairs of nonfixed data are considered. This last observation is omitted in Fajardo et al. [3]. It is important to emphasize that the fuzzy set estimator introduced in Fajardo et al. [4], a particular case of the estimator introduced by Falk and Liese [2], of easy practical implementation, will allow us to overcome the difficulties presented by the estimator Μ‚πœƒπ‘› and satisfy the almost sure, in law, and uniform convergence properties over compact subsets on ℝ.

In this paper we estimate the regression function by means of the nonparametric and fuzzy set estimator of the Nadaraya-Watson type, for independent pairs of data, introduced by Fajardo et al. [3], obtaining a significant reduction of the integrated mean square error of the fuzzy set estimator regarding the integrated mean square error of the classic kernel estimators. This reduction is obtained by the conditions imposed on the thinning function, a function that allows to define the estimator proposed by Fajardo et al. [4], which implies that the fuzzy set estimator has better performance than the kernel estimations. The above reduction is not obtained in Fajardo et al. [3]. Also, the convergence rate of the optimal scaling factor is computed, which coincides with the convergence rate in classic kernel estimation of the regression function. Moreover, the function that minimizes the integrated mean square error of the fuzzy set estimator is obtained. Finally, these theoretical findings are illustrated using a numerical example estimating a regression function with the fuzzy set estimator and the classic kernel estimators.

On the other hand, it is important to emphasize that, along with the reduction of the integrated mean square error, the thinning function, introduced through the thinned point processes, can be used to select points of the sample with different probabilities, in contrast to the kernel estimator, which assigns equal weight to all points of the sample.

This paper is organized as follows. In Section 2, we define the fuzzy set estimator of the regression function and we present its properties of convergence. In Section 3, we obtain the mean square error of the fuzzy set estimator of the regression function, Theorem 3.1, as well as the optimal scale factor and the integrated mean square error. Moreover, we establish the conditions to obtain a reduction of the constants that control the bias and the asymptotic variance regarding the classic kernel estimators; the function that minimizes the integrated mean square error of the fuzzy set estimator is also obtained. In Section 4 a simulation study was conducted to compare the performances of the fuzzy set estimator with the classical Nadaraya-Watson estimators. Section 5 contains the proof of the theorem in the Section 3.

2. Fuzzy Set Estimator of the Regression Function and Its Convergence Properties

In this section we define by means of fuzzy set estimator of the density function introduced in Fajardo et al. [4] a nonparametric and fuzzy set estimator of the regression function of Nadaraya-Watson type for independent pairs of data. Moreover, we present its properties of convergence.

Next, we present the fuzzy set estimator of the density function introduced by Fajardo et al. [4], which is a particular case of the estimator proposed in Falk and Liese [2] and satisfies the almost sure, in law, and uniform convergence properties over compact subset on ℝ.

Definition 2.1. Let 𝑋1,…,𝑋𝑛 be an independent random sample of a real random variable 𝑋 with density function 𝑓. Let 𝑉1,…,𝑉𝑛 be independent random variables uniformly on [0,1] distributed and independent of 𝑋1,…,𝑋𝑛. Let πœ‘ be such that ∫0<πœ‘(π‘₯)𝑑π‘₯<∞ and π‘Žπ‘›=π‘π‘›βˆ«πœ‘(π‘₯)𝑑π‘₯, 𝑏𝑛>0. Then the fuzzy set estimator of the density function 𝑓 at the point π‘₯0βˆˆβ„ is defined as follows: Μ‚πœ—π‘›ξ€·π‘₯0ξ€Έ=1π‘›π‘Žπ‘›π‘›ξ“π‘–=1π‘ˆπ‘₯0,𝑏𝑛𝑋𝑖,𝑉𝑖=πœπ‘›ξ€·π‘₯0ξ€Έπ‘›π‘Žπ‘›,(2.1) where π‘ˆπ‘₯0,𝑏𝑛𝑋𝑖,𝑉𝑖=πŸ™[0,πœ‘((π‘‹π‘–βˆ’π‘₯0)/𝑏𝑛)]𝑉𝑖.(2.2)

Remark 2.2. The events {𝑋𝑖=π‘₯}, π‘₯βˆˆβ„, can be described in a neighborhood of π‘₯0 through the thinned point process π‘πœ‘π‘›π‘›(β‹…)=𝑛𝑖=1π‘ˆπ‘₯0,𝑏𝑛𝑋𝑖,π‘‰π‘–ξ€Έπœ€π‘‹π‘–(β‹…),(2.3) where πœ‘π‘›ξ‚΅(π‘₯)=πœ‘π‘₯βˆ’π‘₯0π‘π‘›ξ‚Άξ€·π‘ˆ=β„™π‘₯0,𝑏𝑛𝑋𝑖,𝑉𝑖=1βˆ£π‘‹π‘–ξ€Έ=π‘₯,(2.4) and π‘ˆπ‘₯0,𝑏𝑛(𝑋𝑖,𝑉𝑖) decides whether 𝑋𝑖 belongs to the neighborhood of π‘₯0 or not. Precisely, πœ‘π‘›(π‘₯) is the probability that the observation 𝑋𝑖=π‘₯ belongs to the neighborhood of π‘₯0. Note that this neighborhood is not explicitly defined, but it is actually a fuzzy set in the sense of Zadeh [5], given its membership function πœ‘π‘›. The thinned process π‘πœ‘π‘›π‘› is therefore a fuzzy set representation of the data (see Falk and Liese [2], Section 2). Moreover, we can observe that π‘πœ‘π‘›π‘›Μ‚πœ—(ℝ)=𝑛(π‘₯0) and the random variable πœπ‘›(π‘₯0) is binomial ℬ(𝑛,𝛼𝑛(π‘₯0)) distributed with 𝛼𝑛π‘₯0ξ€Έξ€Ίπ‘ˆ=𝔼π‘₯0,𝑏𝑛𝑋𝑖,π‘‰π‘–ξ€·π‘ˆξ€Έξ€»=β„™π‘₯0,𝑏𝑛𝑋𝑖,π‘‰π‘–ξ€Έξ€Έξ€Ίπœ‘=1=𝔼𝑛.(𝑋)(2.5) In what follows we assume that 𝛼𝑛(π‘₯0)∈(0,1).

Now, we present the fuzzy set estimator of the regression function introduced in Fajardo et al. [3], which is defined in terms of Μ‚πœ—π‘›(π‘₯0).

Definition 2.3. Let ((𝑋1,π‘Œ1),𝑉1),…,((𝑋𝑛,π‘Œπ‘›),𝑉𝑛) be independent copies of a random vector ((𝑋,π‘Œ),𝑉), where 𝑉1,…,𝑉𝑛 are independent random variables uniformly on [0,1] distributed, and independent of (𝑋1,π‘Œ1),…,(𝑋𝑛,π‘Œπ‘›). The fuzzy set estimator of the regression function π‘Ÿ(π‘₯)=𝔼[π‘Œβˆ£π‘‹=π‘₯] at the point π‘₯0βˆˆβ„ is defined as follows: Μ‚π‘Ÿπ‘›ξ€·π‘₯0ξ€Έ=⎧βŽͺ⎨βŽͺβŽ©βˆ‘π‘›π‘–=1π‘Œπ‘–π‘ˆπ‘₯0,𝑏𝑛𝑋𝑖,π‘‰π‘–ξ€Έπœπ‘›ξ€·π‘₯0ξ€Έifπœπ‘›ξ€·π‘₯0ξ€Έβ‰ 0,0ifπœπ‘›ξ€·π‘₯0ξ€Έ=0.(2.6)

Remark 2.4. The fact that π‘ˆ(π‘₯,𝑣)=πŸ™[0,πœ‘(π‘₯)](𝑣), π‘₯βˆˆβ„, π‘£βˆˆ[0,1], is a kernel when πœ‘(π‘₯) is a density does not guarantee that Μ‚π‘Ÿπ‘›(π‘₯0) is equivalent to the Nadaraya-Watson kernel estimator. With this observation the statement made in Remark 2 by Fajardo et al. [3] is corrected. Moreover, the fuzzy set representation of the data (𝑋𝑖,π‘Œπ‘–)=(π‘₯,𝑦) is defined over the window 𝐼π‘₯0×ℝ with thinning function πœ“π‘›(π‘₯,𝑦)=πœ‘((π‘₯βˆ’π‘₯0)/𝑏𝑛)πŸ™β„(𝑦), where 𝐼π‘₯0 denotes the neighborhood of π‘₯0. In the particular case |π‘Œ|≀𝑀, 𝑀>0, the fuzzy set representation of the data (𝑋𝑖,π‘Œπ‘–)=(π‘₯,𝑦) comes given by πœ“π‘›(π‘₯,𝑦)=πœ‘((π‘₯βˆ’π‘₯0)/𝑏𝑛)πŸ™[βˆ’π‘€,𝑀](𝑦).

Consider the following conditions.  (C1) Functions 𝑓 and π‘Ÿ are at least twice continuously differentiable in a neighborhood of π‘₯0. (C2)𝑓(π‘₯0)>0.  (C3) Sequence 𝑏𝑛 satisfies: 𝑏𝑛→0,𝑛𝑏𝑛/log(𝑛)β†’βˆž,asπ‘›β†’βˆž. (C4) Function πœ‘ is symmetrical regarding zero, has compact support on [βˆ’π΅,𝐡], 𝐡>0, and it is continuous at π‘₯=0 with πœ‘(0)>0. (C5) There exists 𝑀>0 such that |π‘Œ|<π‘€β€‰β€‰π‘Ž.𝑠. (C6) Function πœ™(𝑒)=𝔼[π‘Œ2βˆ£π‘‹=𝑒] is at least twice continuously differentiable in a neighborhood of π‘₯0. (C7)𝑛𝑏5𝑛→0, as π‘›β†’βˆž. (C8) Function πœ‘(β‹…) is monotone on the positives. (C9)𝑏𝑛→0 and 𝑛𝑏2𝑛/log(𝑛)β†’βˆž, as π‘›β†’βˆž. (C10) Functions 𝑓 and π‘Ÿ are at least twice continuously differentiable on the compact set [βˆ’π΅,𝐡]. (C11) There exists πœ†>0 such that infπ‘₯∈[βˆ’π΅,𝐡]𝑓(π‘₯)>πœ†.

Next, we present the convergence properties obtained in Fajardo et al. [3].

Theorem 2.5. Under conditions (C1)–(C5), one has Μ‚π‘Ÿπ‘›ξ€·π‘₯0ξ€Έξ€·π‘₯βŸΆπ‘Ÿ0ξ€Έπ‘Ž.𝑠.(2.7)

Theorem 2.6. Under conditions (C1)–(C7), one has βˆšπ‘›π‘Žπ‘›ξ€·Μ‚π‘Ÿπ‘›ξ€·π‘₯0ξ€Έξ€·π‘₯βˆ’π‘Ÿ0ξ€Έξ€Έβ„’ξƒ©ξ€ΊβŸΆπ‘0,Varπ‘Œβˆ£π‘‹=π‘₯0𝑓π‘₯0ξ€Έξƒͺ.(2.8) The β€œβ„’βˆ’β†’β€ symbol denotes convergence in law.

Theorem 2.7. Under conditions (C4)–(C5) and (C8)–(C11), one has supπ‘₯∈[βˆ’π΅,𝐡]||Μ‚π‘Ÿπ‘›||(π‘₯)βˆ’π‘Ÿ(π‘₯)=π‘œβ„™(1).(2.9)

Remark 2.8. The estimator Μ‚π‘Ÿπ‘› has a limit distribution whose asymptotic variance depends only on the point of estimation, which does not occur with kernel regression estimators. Moreover, since π‘Žπ‘›=π‘œ(π‘›βˆ’1/5) we see that the same restrictions are imposed for the smoothing parameter of kernel regression estimators.

3. Statistical Methodology

In this section we will obtain the mean square error of Μ‚π‘Ÿπ‘›, as well as the optimal scale factor and the integrated mean square error. Moreover, we establish the conditions to obtain a reduction of the constants that control the bias and the asymptotic variance regarding the classic kernel estimators. The function that minimizes the integrated mean square error of Μ‚π‘Ÿπ‘› is also obtained.

The following theorem provides the asymptotic representation for the mean square error (MSE) of Μ‚π‘Ÿπ‘›. Its proof is deferred to Section 5.

Theorem 3.1. Under conditions (C1)–(C6), one has π”Όξ‚ƒξ€ΊΜ‚π‘Ÿπ‘›ξ€»(π‘₯)βˆ’π‘Ÿ(π‘₯)2ξ‚„=1𝑛𝑏𝑛𝑉𝐹(π‘₯)+𝑏4𝑛𝐡2πΉξ‚΅π‘Ž(π‘₯)+π‘œ4𝑛+1π‘›π‘Žπ‘›ξ‚Ά,(3.1) where 𝑉𝐹(π‘₯)=πœ™(π‘₯)βˆ’π‘Ÿ2(π‘₯)ξ‚Ή1𝑓(π‘₯)∫=π‘πœ‘(π‘₯)𝑑π‘₯1(π‘₯)∫,π΅πœ‘(π‘₯)𝑑π‘₯𝐹(1π‘₯)=2βˆ«ξ‚Έπ‘”πœ‘(𝑒)𝑑𝑒(2)(π‘₯)βˆ’π‘“(2)(π‘₯)π‘Ÿ(π‘₯)ξ‚Ήξ€œπ‘’π‘“(π‘₯)2=π‘πœ‘(𝑒)𝑑𝑒2(βˆ«π‘’π‘₯)2πœ‘(𝑒)𝑑𝑒2∫,πœ‘(𝑒)𝑑𝑒(3.2) with π‘Žπ‘›=π‘π‘›ξ€œπœ‘(π‘₯)𝑑π‘₯.(3.3)

Next, we calculate the formula for the optimal asymptotic scale factor π‘βˆ—π‘› to perform the estimation. The integrated mean square error (IMSE) of Μ‚π‘Ÿπ‘› is given by the following: ξ€ΊIMSEΜ‚π‘Ÿπ‘›ξ€»=1π‘›π‘π‘›ξ€œπ‘‰πΉ(π‘₯)𝑑π‘₯+𝑏4π‘›ξ€œπ΅2𝐹(π‘₯)𝑑π‘₯.(3.4) From the above equality, we obtain the following formula for the optimal asymptotic scale factor π‘βˆ—π‘›πœ‘=ξƒ¬βˆ«βˆ«π‘πœ‘(𝑒)𝑑𝑒1(𝑒)π‘‘π‘’π‘›ξ€Ίβˆ«π‘’2ξ€»πœ‘(𝑒)𝑑𝑒2βˆ«ξ€Ίπ‘2ξ€»(𝑒)2𝑑𝑒1/5.(3.5) We obtain a scaling factor of order π‘›βˆ’1/5, which implies a rate of optimal convergence for the IMSEβˆ—[Μ‚π‘Ÿπ‘›] of order π‘›βˆ’4/5. We observe that the optimal scaling factor order for the method of fuzzy set estimation coincides with the order of the classic kernel estimate. Moreover, IMSEβˆ—ξ€ΊΜ‚π‘Ÿπ‘›ξ€»=π‘›βˆ’4/5πΆπœ‘,(3.6) where πΆπœ‘=54ξƒ¬ξ€Ίβˆ«π‘1ξ€»(𝑒)𝑑𝑒4ξ€Ίβˆ«π‘’2ξ€»πœ“(𝑒)𝑑𝑒2βˆ«ξ€Ίπ‘2ξ€»(𝑒)2π‘‘π‘’ξ€Ίβˆ«ξ€»πœ‘(𝑒)𝑑𝑒4ξƒ­1/5,(3.7) with πœ“(π‘₯)=πœ‘(π‘₯)∫.πœ‘(𝑒)𝑑𝑒(3.8) Next, we will establish the conditions to obtain a reduction of the constants that control the bias and the asymptotic variance regarding the classic kernel estimators. For it, we will consider the usual Nadaraya-Watson kernel estimator Μ‚π‘ŸNWπΎβˆ‘(π‘₯)=𝑛𝑖=1π‘Œπ‘–πΎπ‘‹ξ€·ξ€·π‘–ξ€Έβˆ’π‘₯/π‘π‘›ξ€Έβˆ‘π‘›π‘–=1πΎπ‘‹ξ€·ξ€·π‘–βˆ’π‘₯0ξ€Έ/𝑏𝑛,(3.9) which has the mean squared error (see e.g, Ferraty et al. [6], Theorem 2.4.1) π”Όξ‚ƒξ€ΊΜ‚π‘ŸNW𝐾(π‘₯)βˆ’π‘Ÿ(π‘₯)2ξ‚„=1𝑛𝑏𝑛𝑉𝐾(π‘₯)+𝑏4𝑛𝐡2𝐾𝑏(π‘₯)+π‘œ4𝑛+1𝑛𝑏𝑛,(3.10) where 𝑉𝐾(π‘₯)=𝑐1(ξ€œπΎπ‘₯)2(𝐡𝑒)𝑑𝑒,𝐾𝑐(π‘₯)=2βˆ«π‘’(π‘₯)2𝐾(𝑒)𝑑𝑒2.(3.11) Moreover, the IMSE of Μ‚π‘ŸNW𝐾 is given by the following: ξ€ΊIMSEΜ‚π‘ŸNW𝐾=1π‘›π‘π‘›ξ€œπ‘‰πΎ(π‘₯)𝑑π‘₯+𝑏4π‘›ξ€œπ΅2𝐾(π‘₯)𝑑π‘₯.(3.12) From the above equality, we obtain the following formula for the optimal asymptotic scale factor π‘βˆ—π‘›NW𝐾=ξƒ¬βˆ«πΎ2βˆ«π‘(𝑒)𝑑𝑒1(𝑒)π‘‘π‘’π‘›ξ€Ίβˆ«π‘’2𝐾(𝑒)𝑑𝑒2βˆ«ξ€Ίπ‘2(𝑒)2𝑑𝑒1/5.(3.13) Moreover, IMSEβˆ—ξ€ΊΜ‚π‘ŸNW𝐾=π‘›βˆ’4/5𝐢𝐾,(3.14) where 𝐢𝐾=54ξƒ¬ξ‚Έξ€œπ‘1ξ‚Ή(𝑒)𝑑𝑒4ξ‚Έξ€œπΎ2ξ‚Ή(𝑒)𝑑𝑒4ξ‚Έξ€œπ‘’2𝐾(𝑒)𝑑𝑒2ξ€œξ€Ίπ‘2ξ€»(𝑒)2𝑑𝑒1/5.(3.15)

The reduction of the constants that control the bias and the asymptotic variance, regarding the classic kernel estimators, are obtained if for all kernel πΎξ€œξ‚Έξ€œπΎπœ‘(𝑒)𝑑𝑒β‰₯2ξ‚Ή(𝑒)π‘‘π‘’βˆ’1,ξ€œπ‘’2ξ€œπ‘’πœ“(𝑒)𝑑𝑒≀2𝐾(𝑒)𝑑𝑒.(3.16)

Remark 3.2. The conditions on πœ‘ allows us to obtain a value of 𝐡 such that ξ€œπ΅βˆ’π΅ξ‚Έξ€œπΎπœ‘(𝑒)𝑑𝑒>2ξ‚Ή(𝑒)π‘‘π‘’βˆ’1.(3.17) Moreover, to guarantee that ξ€œπ‘’2ξ€œπ‘’πœ“(𝑒)𝑑𝑒≀2𝐾(𝑒)𝑑𝑒,(3.18) we define the function πœ“(π‘₯)=πœ‘(π‘₯)∫,πœ‘(𝑒)𝑑𝑒(3.19) with compact support on [βˆ’π΅β€²,𝐡′]βŠ‚[𝐡,𝐡]. Next, we guarantee the existence of 𝐡′. As 1∫<ξ€œπΎπœ‘(𝑒)𝑑𝑒2([],𝑒)𝑑𝑒,πœ‘(π‘₯)∈0,1(3.20) we have π‘₯2πœ“(π‘₯)≀π‘₯2ξ‚΅ξ€œπΎ2ξ‚Ά(𝑒)𝑑𝑒.(3.21) Observe that for each βˆ«π‘’πΆβˆˆ(0,2𝐾(𝑒)𝑑𝑒] exists π΅ξ…ž=3ξƒŽ3𝐢2∫𝐾2,(𝑒)𝑑𝑒(3.22) such that ξ€œπΆ=π΅β€²βˆ’π΅β€²ξ‚΅ξ€œπΎ2ξ‚Άπ‘₯(𝑒)𝑑𝑒2ξ€œπ‘’π‘‘π‘₯≀2𝐾(𝑒)𝑑𝑒.(3.23) Combining (3.21) and (3.23), we obtain ξ€œπ΅β€²βˆ’π΅β€²π‘’2ξ€œπ‘’πœ“(𝑒)𝑑𝑒≀2𝐾(𝑒)𝑑𝑒.(3.24) In our case we take 𝐡′≀𝐡.

On the other hand, the criterion that we will implement to minimizing (3.6) and obtain a reduction of the constants that control the bias and the asymptotic variance regarding the classic kernel estimation, is the following ξ€œMaximizingπœ‘(𝑒)𝑑𝑒,(3.25) subject to the conditions ξ€œπœ‘2(5𝑒)𝑑𝑒=3;ξ€œξ€œξ€·π‘’π‘’πœ‘(𝑒)𝑑𝑒=0;2ξ€Έβˆ’π‘£πœ‘(𝑒)𝑑𝑒=0,(3.26) with π‘’βˆˆ[βˆ’π΅,𝐡], πœ‘(𝑒)∈[0,1], πœ‘(0)>0 and βˆ«π‘’π‘£β‰€2𝐾𝐸(𝑒)𝑑𝑒, where 𝐾𝐸 is the Epanechnikov kernel 𝐾𝐸3(π‘₯)=4ξ€·1βˆ’π‘₯2ξ€ΈπŸ™[βˆ’1,1](π‘₯).(3.27) The Euler-Lagrange equation with these constraints is πœ•ξ€Ίπœ•πœ‘πœ‘+π‘Žπœ‘2ξ€·π‘₯+𝑏π‘₯πœ‘+𝑐2ξ€Έπœ‘ξ€»βˆ’π‘£=0,(3.28) where π‘Ž, 𝑏, and 𝑐 the three multipliers corresponding to the three constraints. This yields ξ‚Έξ‚€πœ‘(π‘₯)=1βˆ’16π‘₯252ξ‚ΉπŸ™[βˆ’25/16,25/16](π‘₯).(3.29)

The new conditions on πœ‘, allows us to affirm that for all kernel 𝐾IMSEβˆ—ξ€ΊΜ‚π‘Ÿπ‘›ξ€»β‰€IMSEβˆ—ξ€ΊΜ‚π‘ŸNW𝐾.(3.30) Thus, the fuzzy set estimator has the best performance.

4. Simulations

A simulation study was conducted to compare the performances of the fuzzy set estimator with the classical Nadaraya-Watson estimators. For the simulation, we used the regression function given by HΓ€rdle [7] as follows: π‘Œπ‘–=1βˆ’π‘‹π‘–+𝑒(βˆ’200(π‘‹π‘–βˆ’0.5)2)+πœ€π‘–,(4.1) where the 𝑋𝑖 were drawn from a uniform distribution based on the interval [0,1]. Each πœ€π‘– has a normal distribution with 0 mean and 0.1 variance. In this way, we generated samples of size 100, 250, and 500. The bandwidths was computed using (3.5) and (3.13). The fuzzy set estimator and the kernel estimations were computed using (3.29), and the Epanechnikov and Gaussian kernel functions. The IMSEβˆ— values of the fuzzy set estimator and the kernel estimators are given in Table 1.

As seen from Table 1, for all sample sizes, the fuzzy set estimator using varying bandwidths have smaller IMSEβˆ— values than the kernel estimators with fixed and different bandwidth for each estimator. In each case, it is seen that the fuzzy set estimator has the best performance. Moreover, we see that the kernel estimation computed using the Epanechnikov kernel function shows a better performance than the estimations computed using the Gaussian kernel function.

The graphs of the real regression function and the estimations of the regression functions computed over a sample of 500, using 100 points and 𝑣=0.2, are illustrated in Figures 1 and 2.

5. Proof of Theorem 3.1

Proof. Throughout this proof 𝐢 will represent a positive real constant, which can vary from one line to another, and to simplify the annotation we will write π‘ˆπ‘– instead of π‘ˆπ‘₯,𝑏𝑛(𝑋𝑖,𝑉𝑖). Let us consider the following decomposition π”Όξ‚ƒξ€ΊΜ‚π‘Ÿπ‘›ξ€»(π‘₯)βˆ’π‘Ÿ(π‘₯)2ξ‚„ξ€Ί=VarΜ‚π‘Ÿπ‘›ξ€»+𝔼(π‘₯)Μ‚π‘Ÿπ‘›(π‘₯)βˆ’π‘Ÿ(π‘₯)ξ€»ξ€Έ2.(5.1) Next, we will present two equivalent expressions for the terms to the right in the above decomposition. For it, we will obtain, first of all, an equivalent expression for the expectation. We consider the following decomposition (see e.g, Ferraty et al. [6]) Μ‚π‘Ÿπ‘›(π‘₯)=̂𝑔𝑛(π‘₯)π”Όξ€ΊΜ‚πœ—π‘›ξ€»ξƒ©Μ‚πœ—(π‘₯)1βˆ’π‘›ξ€ΊΜ‚πœ—(π‘₯)βˆ’π”Όπ‘›ξ€»(π‘₯)π”Όξ€ΊΜ‚πœ—π‘›ξ€»ξƒͺ+ξ€ΊΜ‚πœ—(π‘₯)π‘›ξ€ΊΜ‚πœ—(π‘₯)βˆ’π”Όπ‘›(π‘₯)ξ€»ξ€»2ξ€Ίπ”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€»2Μ‚π‘Ÿπ‘›(π‘₯).(5.2) Taking the expectation, we obtain π”Όξ€ΊΜ‚π‘Ÿπ‘›ξ€»=𝔼(π‘₯)̂𝑔𝑛(π‘₯)π”Όξ€ΊΜ‚πœ—π‘›ξ€»βˆ’π΄(π‘₯)1ξ€Ίπ”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€»2+𝐴2ξ€Ίπ”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€»2,(5.3) where 𝐴1ξ€Ί=π”ΌΜ‚π‘”π‘›ξ€·Μ‚πœ—(π‘₯)π‘›ξ€ΊΜ‚πœ—(π‘₯)βˆ’π”Όπ‘›,𝐴(π‘₯)ξ€»ξ€Έξ€»2ξ‚ƒξ€·Μ‚πœ—=π”Όπ‘›ξ€ΊΜ‚πœ—(π‘₯)βˆ’π”Όπ‘›(π‘₯)ξ€»ξ€Έ2Μ‚π‘Ÿπ‘›ξ‚„.(π‘₯)(5.4) The hypotheses of Theorem 3.1 allow us to obtain the following particular expressions for 𝔼[̂𝑔𝑛(π‘₯)] and Μ‚πœ—π”Ό[𝑛(π‘₯)], which are calculated in the proof of Theorem 1 in Fajardo et al. [3]. That is 𝔼̂𝑔𝑛(π‘₯)=π”Όπ‘Œπ‘ˆπ‘Žπ‘›ξ‚Ήξ€·π‘Ž=𝑔(π‘₯)+𝑂2𝑛,π”Όξ€ΊΜ‚πœ—π‘›ξ€»ξ‚Έπ‘ˆ(π‘₯)=π”Όπ‘Žπ‘›ξ‚Ήξ€·π‘Ž=𝑓(π‘₯)+𝑂2𝑛.(5.5) Combining the fact that ((𝑋𝑖,π‘Œπ‘–),𝑉𝑖), 1≀𝑖≀𝑛, are identically distributed, with condition (C3), we have 𝐴1ξ€Ί=CovΜ‚π‘”π‘›Μ‚πœ—(π‘₯),𝑛=1(π‘₯)π‘›π‘Žπ‘›π”Όξ‚Έπ‘Œπ‘ˆπ‘Žπ‘›ξ‚Ήβˆ’1π‘›π”Όξ‚Έπ‘Œπ‘ˆπ‘Žπ‘›ξ‚Ήπ”Όξ‚Έπ‘ˆπ‘Žπ‘›ξ‚Ή=1π‘›π‘Žπ‘›[]βˆ’1𝑔(π‘₯)+π‘œ(1)𝑛[]=1𝑔(π‘₯)+π‘œ(1)][𝑓(π‘₯)+π‘œ(1)π‘›π‘Žπ‘›ξ‚΅1𝑔(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά.(5.6) On the other hand, by condition (C5) there exists 𝐢>0 such that |Μ‚π‘Ÿπ‘›(π‘₯)|≀𝐢. Thus, we can write ||𝐴2||ξ‚ƒξ€ΊΜ‚πœ—β‰€πΆπ”Όπ‘›(ξ€ΊΜ‚πœ—π‘₯)βˆ’π”Όπ‘›(π‘₯)ξ€»ξ€»2ξ‚„=πΆπ‘›π‘Ž2π‘›ξ€·π”Όξ€Ίπ‘ˆ2ξ€»[π‘ˆ])βˆ’(𝔼2ξ€Έ=πΆπ‘›π‘Žπ‘›π”Ό[π‘ˆ]π‘Žπ‘›[π‘ˆ]{1βˆ’π”Ό}.(5.7) Note that 𝛼𝑛(π‘₯)π‘Žπ‘›ξ€ΊΜ‚πœ—=π”Όπ‘›ξ€»ξ€·π‘Ž(π‘₯)=𝑓(π‘₯)+𝑂2𝑛.(5.8) Thus, we can write ||𝐴2||β‰€πΆπ‘›π‘Žπ‘›ξ€Ίξ€·π‘Žπ‘“(π‘₯)+𝑂2𝑛[π‘ˆ]ξ€Έξ€»{1βˆ’π”Ό}.(5.9) Note that by condition (C1) the density 𝑓 is bounded in the neighborhood of π‘₯. Moreover, condition (C3) allows us to suppose, without loss of generality, that 𝑏𝑛<1 and by (2.5) we can bound (1βˆ’π”Ό[π‘ˆ]). Therefore, 𝐴2ξ‚΅1=π‘‚π‘›π‘Žπ‘›ξ‚Ά.(5.10)
Now, we can write 𝐴1ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ2=1𝑓2ξ€·π‘₯0ξ€Έξƒͺξ‚΅1+π‘œ(1)π‘›π‘Žπ‘›π‘”ξ€·π‘₯0ξ€Έξ‚΅1+π‘œπ‘›π‘Žπ‘›π΄ξ‚Άξ‚Ά=π‘œ(1),2ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ2=ξ‚΅1𝑓2𝑂1(π‘₯)+π‘œ(1)π‘›π‘Žπ‘›ξ‚Άξ‚΅1=π‘‚π‘›π‘Žπ‘›ξ‚Άξ‚΅1+π‘œπ‘›π‘Žπ‘›ξ‚Άξ‚΅1=π‘‚π‘›π‘Žπ‘›ξ‚Ά.(5.11) The above equalities, imply that π”Όξ€ΊΜ‚π‘Ÿπ‘›ξ€»=𝔼(π‘₯)̂𝑔𝑛(π‘₯)π”Όξ€ΊΜ‚πœ—π‘›ξ€»ξ‚΅1(π‘₯)+π‘œ(1)+π‘‚π‘›π‘Žπ‘›ξ‚Ά=𝔼̂𝑔𝑛(π‘₯)π”Όξ€ΊΜ‚πœ—π‘›ξ€»ξ‚΅1(π‘₯)+π‘‚π‘›π‘Žπ‘›ξ‚Ά.(5.12) Once more, the hypotheses of Theorem 3.1 allow us to obtain the following general expressions for Μ‚πœ—π”Ό[𝑛(π‘₯)] and 𝔼[̂𝑔𝑛(π‘₯)], which are calculated in the proofs of Theorem 1 in Fajardo et al. [3, 4], respectively. That is π”Όξ€ΊΜ‚πœ—π‘›ξ€»π‘Ž(π‘₯)=𝑓(π‘₯)+2𝑛2ξ€Ίβˆ«ξ€»πœ‘(𝑒)𝑑𝑒3π‘“ξ…žξ…žξ€œπ‘’(π‘₯)2+π‘Žπœ‘(𝑒)𝑑𝑒2𝑛2ξ€Ίβˆ«ξ€»πœ‘(𝑒)3ξ€œπ‘’2ξ€Ίπ‘“πœ‘(𝑒)ξ…žξ…žξ€·π‘₯+π›½π‘’π‘π‘›ξ€Έβˆ’π‘“ξ…žξ…žξ€»π”Όξ€Ί(π‘₯)𝑑𝑒,(5.13)Μ‚π‘”π‘›ξ€»π‘Ž(π‘₯)=𝑔(π‘₯)+2𝑛2ξ€Ίβˆ«ξ€»πœ‘(𝑒)𝑑𝑒3π‘”ξ…žξ…žξ€œπ‘’(π‘₯)2+π‘Žπœ‘(𝑒)𝑑𝑒2𝑛2ξ€Ίβˆ«ξ€»πœ‘(𝑒)𝑑𝑒3ξ€œπ‘’2πœ‘ξ€Ίπ‘”(𝑒)ξ…žξ…žξ€·π‘₯+π›½π‘’π‘π‘›ξ€Έβˆ’π‘”ξ…žξ…žξ€»(π‘₯)𝑑𝑒.(5.14)
By conditions (C1) and (C4), we have that ξ€œπ‘’2ξ€Ίπ‘”πœ‘(𝑒)ξ…žξ…žξ€·π‘₯+π›½π‘’π‘π‘›ξ€Έβˆ’π‘”ξ…žξ…ž(ξ€»ξ€œπ‘’π‘₯)𝑑𝑒=π‘œ(1),2ξ€Ίπ‘“πœ‘(𝑒)ξ…žξ…žξ€·π‘₯+π›½π‘’π‘π‘›ξ€Έβˆ’π‘“ξ…žξ…žξ€»(π‘₯)𝑑𝑒=π‘œ(1).(5.15)
Then π”Όξ€ΊΜ‚π‘Ÿπ‘›ξ€»=𝑔𝑏(π‘₯)(π‘₯)+2π‘›βˆ«πœ‘ξ€Έπ‘”/2(𝑒)π‘‘π‘’ξ…žξ…žβˆ«π‘’(π‘₯)2πœ‘(𝑒)𝑑𝑒𝑏𝑓(π‘₯)+2π‘›βˆ«ξ€Έπ‘“/2πœ‘(𝑒)π‘‘π‘’ξ…žξ…žβˆ«π‘’(π‘₯)2ξ‚΅1πœ‘(𝑒)𝑑𝑒+π‘‚π‘›π‘Žπ‘›ξ‚Ά=𝐻𝑛1(π‘₯)+π‘‚π‘›π‘Žπ‘›ξ‚Ά.(5.16) Next, we will obtain an equivalent expression for 𝐻𝑛(π‘₯). Taking the conjugate, we have 𝐻𝑛1(π‘₯)=π·π‘›βŽ›βŽœβŽœβŽπ‘”π‘(π‘₯)(π‘₯)𝑓(π‘₯)+2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«πœ‘ξ€Ίπ‘”(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)𝑓(π‘₯)βˆ’π‘“ξ…žξ…žξ€»+𝑏(π‘₯)𝑔(π‘₯)𝑛2∫ξƒͺπœ‘(𝑒)𝑑𝑒2π‘“ξ…žξ…ž(π‘₯)π‘”ξ…žξ…žξ‚΅ξ€œπ‘’(π‘₯)2ξ‚Άπœ‘(𝑒)𝑑𝑒2⎞⎟⎟⎠=1𝐷𝑛𝑏(π‘₯)𝑔(π‘₯)𝑓(π‘₯)+2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«ξ€Ίπ‘”πœ‘(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)𝑓(π‘₯)βˆ’π‘“ξ…žξ…žξ€»ξƒͺξ€·π‘Ž(π‘₯)𝑔(π‘₯)+π‘œ2𝑛,(5.17) where 𝐷𝑛(π‘₯)=𝑓2𝑏(π‘₯)βˆ’2π‘›π‘“ξ…žξ…žβˆ«π‘’(π‘₯)2πœ‘(𝑒)𝑑𝑒2∫ξƒͺπœ‘(𝑒)𝑑𝑒2.(5.18) By condition (C3), we have 1𝐷𝑛=1(π‘₯)𝑓2(π‘₯)+π‘œ(1).(5.19)
So that, 𝐻𝑛1(π‘₯)=𝑓2𝑏(π‘₯)+π‘œ(1)𝑔(π‘₯)𝑓(π‘₯)+2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«ξ€Ίπ‘”πœ‘(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)𝑓(π‘₯)βˆ’π‘“ξ…žξ…žξ€»ξƒͺξ€·π‘Ž(π‘₯)𝑔(π‘₯)+π‘œ2𝑛𝑏=π‘Ÿ(π‘₯)+2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«ξ‚Έπ‘”πœ‘(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)βˆ’π‘“ξ…žξ…ž(π‘₯)π‘Ÿ(π‘₯)ξ‚Ήξ€·π‘Žπ‘“(π‘₯)+π‘œ2𝑛.(5.20) Now, we can write π”Όξ€ΊΜ‚π‘Ÿπ‘›ξ€»=𝑏(π‘₯)βˆ’π‘Ÿ(π‘₯)2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«πœ‘ξ‚Έπ‘”(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)βˆ’π‘“(2)(π‘₯)π‘Ÿ(π‘₯)ξ‚Ήξ€·π‘Žπ‘“(π‘₯)+π‘œ2𝑛1+π‘‚π‘›π‘Žπ‘›ξ‚Ά.(5.21) By condition (C3), we have π”Όξ€ΊΜ‚π‘Ÿπ‘›ξ€»=𝑏(π‘₯)βˆ’π‘Ÿ(π‘₯)2π‘›βˆ«π‘’2πœ‘(𝑒)𝑑𝑒2βˆ«πœ‘ξ‚Έπ‘”(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)βˆ’π‘“ξ…žξ…ž(π‘₯)π‘Ÿ(π‘₯)ξ‚Ήξ€·π‘Žπ‘“(π‘₯)+π‘œ2𝑛+π‘œ(1)=𝑏2π‘›π΅πΉξ€·π‘Ž(π‘₯)+π‘œ2𝑛,(5.22) where 𝐡𝐹𝑔(π‘₯)=ξ…žξ…ž(π‘₯)βˆ’π‘“ξ…žξ…ž(π‘₯)π‘Ÿ(π‘₯)ξ‚Ήβˆ«π‘’π‘“(π‘₯)2πœ‘(𝑒)𝑑𝑒2∫.πœ‘(𝑒)𝑑𝑒(5.23) Therefore, ξ€·π”Όξ€ΊΜ‚π‘Ÿπ‘›(π‘₯)βˆ’π‘Ÿ(π‘₯)ξ€»ξ€Έ2=𝑏4𝑛𝐡2𝐹(π‘₯)+2𝑏2π‘›π΅πΉξ€·π‘Ž(π‘₯)π‘œ2π‘›ξ€Έξ€·π‘Ž+π‘œ4𝑛=𝑏4𝑛𝐡2πΉξ€·π‘Ž(π‘₯)+π‘œ4π‘›ξ€Έξ€·π‘Ž+π‘œ4𝑛=𝑏4𝑛𝐡2πΉξ€·π‘Ž(π‘₯)+π‘œ4𝑛.(5.24) Next, we will obtain an expression for the variance in (5.1). For it, we will use the following expression (see e.g., Stuart and Ord [8]) Var̂𝑔𝑛(π‘₯)Μ‚πœ—π‘›ξƒ­=ξ€Ί(π‘₯)Var̂𝑔𝑛(π‘₯)ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ2+𝔼̂𝑔𝑛(π‘₯)ξ€»ξ€Έ2ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ4ξ€ΊΜ‚πœ—Varπ‘›ξ€»βˆ’ξ€Ί(π‘₯)2𝔼̂𝑔𝑛(π‘₯)CovΜ‚π‘”π‘›Μ‚πœ—(π‘₯),𝑛(π‘₯)ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ3.(5.25) Since that ((𝑋𝑖,π‘Œπ‘–),𝑉𝑖) are i.i.d and the (𝑋𝑖,𝑉𝑖) are i.i.d, 1≀𝑖≀𝑛, we have ξ€ΊVar̂𝑔𝑛=1(π‘₯)π‘›π‘Ž2𝑛1Var(π‘Œπ‘ˆ)=π‘›π‘Žπ‘›π”Όξ‚Έ1π‘Žπ‘›π‘Œ2π‘ˆξ‚Ήβˆ’1𝑛𝔼1π‘Žπ‘›π‘Œπ‘ˆξ‚Ήξ‚Ά2,ξ€ΊΜ‚πœ—(5.26)Var𝑛=1(π‘₯)ξ€·π‘›π‘Žπ‘›ξ€Έ2Var𝑛𝑖=1π‘ˆπ‘–ξƒ­=1ξ€·π‘›π‘Žπ‘›ξ€Έ2𝑛𝛼𝑛(π‘₯)1βˆ’π›Όπ‘›ξ€Έ,(π‘₯)(5.27) the last equality because βˆ‘π‘›π‘–=1π‘ˆπ‘– is binomial ℬ(𝑛,𝛼𝑛(π‘₯0)) distributed. Remember that π”Όξ‚Έπ‘Œπ‘ˆπ‘Žπ‘›ξ‚Ήξ€·π‘Ž=𝑔(π‘₯)+𝑂2𝑛.(5.28) Moreover, the hypothesis of Theorem 3.1 allow us to obtain the following expression π”Όξƒ¬π‘Œ2π‘–π‘ˆπ‘–π‘Žπ‘›ξƒ­ξ€·π‘Ž=πœ™(π‘₯)𝑓(π‘₯)+𝑂2𝑛,(5.29) which is calculated in the proof of Lemma 1 in Fajardo et al. [3]. By condition (C3), we have ξ€ΊVar̂𝑔𝑛=1(π‘₯)π‘›π‘Žπ‘›1(πœ™(π‘₯)𝑓(π‘₯)+π‘œ(1))βˆ’π‘›(𝑔(π‘₯)+π‘œ(1))2=1π‘›π‘Žπ‘›ξ‚΅1πœ™(π‘₯)𝑓(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά.(5.30) Remember that π”Όξ€ΊΜ‚πœ—π‘›ξ€»=1(π‘₯)π‘Žπ‘›π”Ό[π‘ˆ]=𝛼𝑛(π‘₯)π‘Žπ‘›ξ€·π‘₯=𝑓0ξ€Έ+π‘œ(1).(5.31) Thus, ξ€ΊΜ‚πœ—Var𝑛=1(π‘₯)π‘›π‘Žπ‘›π›Όπ‘›(π‘₯)π‘Žπ‘›βˆ’1𝑛𝛼𝑛(π‘₯)π‘Žπ‘›ξ‚Ή2=1π‘›π‘Žπ‘›1(𝑓(π‘₯)+π‘œ(1))βˆ’π‘›(𝑓(π‘₯)+π‘œ(1))2=1π‘›π‘Žπ‘›ξ‚΅1𝑓(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά,1ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έπ‘˜=1π‘“π‘˜(π‘₯)+π‘œ(1),(5.32) for π‘˜=2,3,4. Finally, we saw that ξ€ΊCovΜ‚π‘”π‘›Μ‚πœ—(π‘₯),𝑛=1(π‘₯)π‘›π‘Žπ‘›ξ‚΅1𝑔(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά.(5.33) Therefore, ξ€ΊVar̂𝑔𝑛(π‘₯)ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ2=ξ‚Έ1𝑓21(π‘₯)+π‘œ(1)ξ‚Ήξ‚Έπ‘›π‘Žπ‘›ξ‚΅1πœ™(π‘₯)𝑓(π‘₯)+π‘œπ‘›π‘Žπ‘›=1ξ‚Άξ‚Ήπ‘›π‘Žπ‘›πœ™(π‘₯)ξ‚΅1𝑓(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά,𝔼(5.34)̂𝑔𝑛(π‘₯)ξ€»ξ€Έ2ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ4ξ€ΊΜ‚πœ—Var𝑛=1(π‘₯)𝑓4𝑔(π‘₯)+π‘œ(1)2ξ€»Γ—ξ‚Έ1(π‘₯)+π‘œ(1)π‘›π‘Žπ‘›ξ‚΅1𝑓(π‘₯)+π‘œπ‘›π‘Žπ‘›=1ξ‚Άξ‚Ήξ‚Άπ‘›π‘Žπ‘›π‘”2(π‘₯)𝑓3ξ‚΅1(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά,2𝔼(5.35)̂𝑔𝑛(π‘₯)ξ€·π”Όξ€ΊΜ‚πœ—π‘›(π‘₯)ξ€»ξ€Έ3ξ€ΊCovΜ‚π‘”π‘›Μ‚πœ—(π‘₯),𝑛=ξ‚΅2ξ‚Έ1(π‘₯)𝑓3ξ‚Ή[]Γ—ξ‚Έ1(π‘₯)+π‘œ(1)𝑔(π‘₯)+π‘œ(1)π‘›π‘Žπ‘›ξ‚΅1𝑔(π‘₯)+π‘œπ‘›π‘Žπ‘›=2ξ‚Άξ‚Ήξ‚Άπ‘›π‘Žπ‘›π‘”2(π‘₯)𝑓3(ξ‚΅1π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά.(5.36) Thus,ξ€ΊVarΜ‚π‘Ÿπ‘›ξ€»=1(π‘₯)𝑛𝑏𝑛𝑉𝐹1(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Ά,(5.37) where 𝑉𝐹(π‘₯)=πœ™(π‘₯)βˆ’π‘Ÿ2(π‘₯)ξ‚Ή1𝑓(π‘₯)∫.πœ‘(π‘₯)𝑑π‘₯(5.38) We can conclude that,π”Όξ‚ƒξ€ΊΜ‚π‘Ÿπ‘›ξ€»(π‘₯)βˆ’π‘Ÿ(π‘₯)2ξ‚„=1𝑛𝑏𝑛𝑉𝐹(π‘₯)+𝑏4𝑛𝐡2𝐹1(π‘₯)+π‘œπ‘›π‘Žπ‘›ξ‚Άξ€·π‘Ž+π‘œ4𝑛=1𝑛𝑏𝑛𝑉𝐹(π‘₯)+𝑏4𝑛𝐡2πΉξ‚΅π‘Ž(π‘₯)+π‘œ4𝑛+1π‘›π‘Žπ‘›ξ‚Ά,(5.39) where π΅πΉβˆ«π‘’(π‘₯)=2πœ‘(𝑒)𝑑𝑒2βˆ«ξ‚Έπ‘”πœ‘(𝑒)π‘‘π‘’ξ…žξ…ž(π‘₯)βˆ’π‘“ξ…žξ…ž(π‘₯)π‘Ÿ(π‘₯)ξ‚Ή.𝑓(π‘₯)(5.40)

Acknowledgment

The author wants to especially thank the referees for their valuable suggestions and revisions. He also thanks Henrry Lezama for proofreading and editing the English text.