About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2011 (2011), Article ID 129506, 14 pages
http://dx.doi.org/10.1155/2011/129506
Research Article

Parallel Robot Translational Performance Evaluation through Direction-Selective Index (DSI)

Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy

Received 28 January 2011; Revised 13 May 2011; Accepted 26 May 2011

Academic Editor: Yuan Zheng

Copyright © 2011 G. Boschetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Salisbury and J. J. Craig, “Articulated hands: force control and kinematic issues,” International Journal of Robotics Research, vol. 1, no. 1, pp. 4–17, 1982. View at Scopus
  2. T. Yoshikawa, “Manipulability of robotic mechanisms,” International Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985. View at Scopus
  3. C. Gosselin and J. Angeles, “Global performance index for the kinematic optimization of robotic manipulators,” Transaction of the ASME, Journal of Mechanical Design, vol. 113, no. 3, pp. 220–226, 1991. View at Scopus
  4. J. P. Merlet, “Jacobian, manipulability, condition number, and accuracy of parallel robots,” Journal of Mechanical Design, Transactions of the ASME, vol. 128, no. 1, pp. 199–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Angeles and C. S. Lopez-Cajun, “Kinematic isotropy and the conditioning index of serial robotic manipulators,” International Journal of Robotics Research, vol. 11, no. 6, pp. 560–571, 1992. View at Scopus
  6. C. M. Gosselin, “The optimum design of robotic manipulators using dexterity indices,” Robotics and Autonomous Systems, vol. 9, no. 4, pp. 213–226, 1992. View at Scopus
  7. S. G. Kim and J. Ryu, “New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 731–737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. G. Kim and J. Ryu, “Force transmission analyses with dimensionally homogeneous jacobian matrices for parallel manipulators,” KSME International Journal, vol. 18, no. 5, pp. 780–788, 2004. View at Scopus
  9. G. Pond and J. A. Carretero, “Formulating Jacobian matrices for the dexterity analysis of parallel manipulators,” Mechanism and Machine Theory, vol. 41, no. 12, pp. 1505–1519, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. R. V. Mayorga and J. Carrera, “A manipulator performance index based on the jacobian rate of change: a motion planning analysis,” in Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Fla, USA, May 2006.
  11. Y. Li and Q. Xu, “A new approach to the architecture optimization of a general 3-PUU translational parallel manipulator,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 46, no. 1, pp. 59–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Xu and Y. Li, “An investigation on mobility and stiffness of a 3-DOF translational parallel manipulator via screw theory,” Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 402–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Gosselin, “Stiffness mapping for parallel manipulators,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 377–382, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Li and Q. Xu, “Kinematic analysis and design of a new 3-DOF translational parallel manipulator,” Journal of Mechanical Design, Transactions of the ASME, vol. 128, no. 4, pp. 729–737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Mansouri and M. Ouali, “A new homogeneous manipulability measure of robot manipulators, based on power concept,” Mechatronics, vol. 19, no. 6, pp. 927–944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Mansouri and M. Ouali, “The power manipulability—a new homogeneous performance index of robot manipulators,” Robotics and Computer-Integrated Manufacturing, vol. 27, no. 2, pp. 434–449, 2011. View at Publisher · View at Google Scholar
  17. J. Wang, X. Liu, and C. Wu, “Optimal design of a new spatial 3-DOF parallel robot with respect to a frame-free index,” Science in China E, vol. 52, no. 4, pp. 986–999, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Wang, C. Wu, and X. J. Liu, “Performance evaluation of parallel manipulators: motion/force transmissibility and its index,” Mechanism and Machine Theory, vol. 45, pp. 1462–1476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Boschetti and A. Trevisani, “Direction selective performance indexes for parallel manipulators,” in Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 2010.
  20. O. Ma and J. Angeles, “Optimum architecture design of platform manipulator,” in Proceedings of the IEEE International Conference on Robotics Automation, pp. 1131–1135, 1991.
  21. O. Company, F. Pierrot, S. Krut, and V. Nabat, “Simplified dynamic modeling and improvement of a four-degree-of-freedom pick-and-place manipulator with articulated moving platform,” Proceedings of IMechE Part I, vol. 223, no. 1, pp. 13–27, 2009.