About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2011 (2011), Article ID 571485, 12 pages
http://dx.doi.org/10.1155/2011/571485
Research Article

Maintaining Wireless Connectivity Constraints for Robot Swarms in the Presence of Obstacles

Department of Systems Engineering, United States Naval Academy, Annapolis, MD 21401, USA

Received 31 December 2010; Revised 24 May 2011; Accepted 17 June 2011

Academic Editor: John T. Y. Wen

Copyright © 2011 Joel M. Esposito. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Zhang, D. M. Fratantoni, D. A. Paley, J. M. Lund, and N. E. Leonard, “Control of coordinated patterns for ocean sampling,” International Journal of Control, vol. 80, no. 7, pp. 1186–1199, 2007. View at Publisher · View at Google Scholar
  2. S. Thrun, “A probabilistic on-line mapping algorithm for teams of mobile robots,” International Journal of Robotics Research, vol. 20, no. 5, pp. 335–363, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Jung and G. S. Sukhatme, “Tracking targets using multiple robots: the effect of environment occlusion,” Autonomous Robots, vol. 13, no. 3, pp. 191–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Esposito, M. Feemster, and E. Smith, “Cooperative manipulation on the water using a swarm of autonomous tugboats,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '08), pp. 1501–1506, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Esposito, “Distributed grasp synthesis for swarm manipulation with applications to autonomous tugboats,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '08), pp. 1489–1494, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via caging in environments with obstacles,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '08), pp. 1471–1476, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Horowitz and T. D. Murphey, “Adaptive cooperative manipulation with intermittent contact,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '08), pp. 1483–1488, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kloetzer and C. Belta, “Temporal logic planning and control of robotic swarms by hierarchical abstractions,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 320–330, 2007. View at Publisher · View at Google Scholar
  9. B. E. Bishop, “Control of platoons of nonholonomic vehicles using redundant manipulator analogs,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4606–4611, Barcelona, Spain, April 2005.
  10. J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–1298, 2006. View at Publisher · View at Google Scholar
  11. H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. P. Spanos and R. M. Murray, “Motion planning with wireless network constraints,” in Proceedings of the American Control Conference, (ACC '05), pp. 87–92, Portland, Ore, USA, June 2005. View at Scopus
  14. M. M. Zavlanos and G. J. Pappas, “Controlling connectivity of dynamic graphs,” in Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6388–6393, Orlando, Fla, USA, December 2005.
  15. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. W. Reynolds, “Flocks, birds and schools: a distributed behavioral model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987. View at Scopus
  17. J. H. Reif and H. Wang, “Social potential fields: a distributed behavioral control for autonomous robots,” Robotics and Autonomous Systems, vol. 27, no. 3, pp. 171–194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of formations of nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Gazi and K. M. Passino, “Stability analysis of swarms,” IEEE Transactions on Automatic Control, vol. 48, no. 4, pp. 692–697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Ogren, M. Egerstedt, and X. Hu, “A control Lyapunov function approach to multi-agent coordination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 847–851, 2002.
  22. A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, “A vision-based formation control framework,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 813–825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar collective motion with limited communication,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 706–719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Mesbahi, “On state-dependent dynamic graphs and their controllability properties,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 387–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 116–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity of mobile networks,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 812–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Esposito and T. W. Dunbar, “Maintaining wireless connectivity constraints for swarms in the presence of obstacles,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 946–956, Orlando, Fla, USA, May 2006.
  28. Y. Mostofi, A. Gonzalez-Ruiz, A. Gaffarkhah, and D. Li, “Characterization and modeling of wireless channels for networked robotic and control systems—a comprehensive overview,” in Proceedings of the IEEE / RSJ International Conference on Intelligent Robots and Systems, pp. 4849–4854, St. Louis, Mo, USA, October 2009.
  29. I. Rekleitis, V. Lee-Shue, A. Peng, and H. Choset, “Limited communication, multi-robot team based coverage,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3462–3467, New Orleans, La, USA, May 2004. View at Scopus
  30. R. Grabowski, P. Kholsa, and H. Choset, “Autonomous exploration via regions of interest,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2011–2016, Las Vegas, Nev, USA, October 2003.
  31. F. Dellaert, F. Alegre, and E. B. Martinson, “Intrinsic location and map making with two applications,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2344–2349, Taipei, Taiwan, September 2003.
  32. F. Belkhouche, B. Belkhouche, and P. Rastgoufard, “Line of sight robot navigation toward a moving goal,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 36, no. 2, pp. 255–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. C. Arkin and J. Diaz, “Line-of-sight constrained exploration for reactive multi-agent robotic teams,” in Proceedings of the 7th International Workshop on Advanced Motion Control, (AMC '02), Maribor, Slovenia, July 2002.
  34. S. O. Anderson, R. Simmons, and D. Golberg, “Maintaining line of sight communications networks between planetary rovers,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS '03), pp. 2266–2272, Las Vegas, Nev, USA, October 2003.
  35. J. R. Munkres, Topology, Prentice Hall, Englewood Cliffs, NJ, USA, 1975.
  36. E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–518, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Esposito and V. Kumar, “A method for modifying closed-loop motion plans to satisfy unpredictable dynamic constraints at runtime,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1691–1696, Washington, DC, USA, May 2002. View at Scopus
  38. K. Narendra and J. Balakrishnan, “A common lyapunov function for stable LTI systems with commuting A matricies,” IEEE Transactions on Automatic Control, vol. 39, no. 3, pp. 2469–2471, 1994.
  39. M. S. Branicky, Studies in hybrid systems: modeling, analysis, and control, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1995.
  40. D. E. Koditschek, “The geometry of a robot programming language,” in Proceedings of the Workshop on the Algorithmic Foundations of Robotics, vol. 3, pp. 263–268, 1994.
  41. M. Erdmann, “Understanding action and sensing by designing action-based sensors,” International Journal of Robotics Research, vol. 14, no. 5, pp. 483–509, 1995. View at Scopus
  42. G. Vanderplaats, Numerical Optimization Techniques for Engineering Design, McGraw-Hill, New York, NY, USA, 1992.
  43. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1, pp. 49–95, 1996. View at Scopus
  44. M. Grant and S. Boyd, 2011, CVX: Matlab software for disciplined convex programming, version 1.21, http://cvxr.com/cvx.
  45. J. M. Esposito and O. Barton, “Matlab toolbox for the irobot create,” 2008, http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/.