About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2012 (2012), Article ID 512616, 9 pages
http://dx.doi.org/10.1155/2012/512616
Review Article

Robotics for Natural Orifice Transluminal Endoscopic Surgery: A Review

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Received 11 September 2012; Accepted 18 December 2012

Academic Editor: Yangmin Li

Copyright © 2012 Xiaona Wang and Max Q.-H. Meng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Garud and F. F. Willingham, “Natural orifice transluminal endoscopic surgery,” Endoscopy, vol. 44, no. 9, pp. 865–868, 2012.
  2. S. V. Kantsevoy, B. Hu, S. B. Jagannath et al., “Transgastric endoscopic splenectomy: is it possible?” Surgical Endoscopy, vol. 20, no. 3, pp. 522–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. N. Kalloo, V. K. Singh, S. B. Jagannath et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, vol. 60, no. 1, pp. 114–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. L. L. Swanstrom, Y. Khajanchee, and M. A. Abbas, “Natural orifice transluminal endoscopic surgery: the future of gastrointestinal surgery,” The Permanente Journal, vol. 12, no. 2, pp. 42–47, 2008.
  5. G. V. Rao and N. Reddy, “Transgastric appendectomy in humans,” in Proceedings of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) Annual Conference, Dallas, Tex, USA, 2006.
  6. L. L. Swanström, “Natural orifice transluminal endoscopic surgery,” Endoscopy, vol. 41, no. 1, pp. 82–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. F. M. Sánchez-Margallo, J. M. Asencio, M. C. Tejonero et al., “Technical feasibility of totally natural orifice cholecystectomy in a swine model,” Minimally Invasive Therapy and Allied Technologies, vol. 17, no. 6, pp. 361–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Pearl and J. Ponsky, “Natural orifice transluminal endoscopic surgery: past, present and future,” Journal of Minimal Access Surgery, vol. 3, no. 2, pp. 43–46, 2007. View at Scopus
  9. L. L. Swanstrom, M. Whiteford, and Y. Khajanchee, “Developing essential tools to enable transgastric surgery (NOTES),” Surgical Endoscopy, vol. 22, no. 3, pp. 16–20, 2008. View at Scopus
  10. S. J. Bardaro and L. Swanström, “Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES),” Minimally Invasive Therapy and Allied Technologies, vol. 15, no. 6, pp. 378–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Rattner and A. Kalloo, “White paper—ASGE/SAGES working group on natural orifice translumenal endoscopic surgery,” Surgical Endoscopy, vol. 20, no. 2, pp. 329–333, 2006. View at Scopus
  12. A. Degani, H. Choset, A. Wolf, and M. A. Zenati, “Highly articulated robotic probe for minimally invasive surgery,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 4167–4172, Orlando, Fla, USA, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Abbott, C. Becke, R. I. Rothstein, and W. J. Peine, “Design of an endoluminal NOTES robotic system,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), pp. 410–416, San Diego, Calif, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Pearl and J. L. Ponsky, “Natural orifice translumenal endoscopic surgery: a critical review,” Journal of Gastrointestinal Surgery, vol. 12, no. 7, pp. 1293–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. http://www.usgimedical.com/eos/index.htm.
  16. L. Swanström, P. Swain, and P. Denk, “Development and validation of a new generation of flexible endoscope for NOTES,” Surgical Innovation, vol. 16, no. 2, pp. 104–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yonezawa, M. Kaise, K. Sumiyama, K. Goda, H. Arakawa, and H. Tajiri, “A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms,” Endoscopy, vol. 38, no. 10, pp. 1011–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. L. Swanstrom, R. Kozarek, P. J. Pasricha et al., “Development of a new access device for transgastric surgery,” Journal of Gastrointestinal Surgery, vol. 9, no. 8, pp. 1129–1137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Cahill, “Natural orifice transluminal endoscopic surgery—here and now,” The Surgeon, vol. 8, no. 1, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Meadows and R. S. Chamberlain, “A review on the status of natural orifice transluminal endoscopic surgery (NOTES) cholecystectomy: techniques and challenges,” Open Access Surgery, vol. 3, pp. 73–86, 2010.
  21. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature, vol. 405, no. 6785, pp. 417–418, 2000. View at Scopus
  22. X. Wang and M. Q. H. Meng, “A magnetic stereo-actuation mechanism for active capsule endoscope,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 2811–2814, Lyon, France, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Quirini, A. Menciassi, S. Scapellato et al., “Feasibility proof of a legged locomotion capsule for the GI tract,” Gastrointestinal Endoscopy, vol. 67, no. 7, pp. 1153–1158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Rentschler, J. Dumpert, S. R. Platt, S. M. Farritor, and D. Oleynikov, “Natural orifice surgery with an endoluminal mobile robot,” Surgical Endoscopy, vol. 21, no. 7, pp. 1212–1215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. E. Rentschler and D. Oleynikov, “Recent in vivo surgical robot and mechanism developments,” Surgical Endoscopy, vol. 21, no. 9, pp. 1477–1481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. C. Lehman, K. A. Berg, J. Dumpert et al., “Surgery with cooperative robots,” Computer Aided Surgery, vol. 13, no. 2, pp. 95–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Cadeddu, R. Fernandez, M. Desai et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience,” Surgical Endoscopy, vol. 23, no. 8, pp. 1894–1899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. C. Shah, S. L. Buettner, A. C. Lehman, S. M. Farritor, and D. Oleynikov, “Miniature in vivo robotics and novel robotic surgical platforms,” Urologic Clinics of North America, vol. 36, no. 2, pp. 251–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. C. Lehman, J. Dumpert, N. A. Wood et al., “Natural orifice cholecystectomy using a miniature robot,” Surgical Endoscopy, vol. 23, no. 2, pp. 260–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. R. Platt, J. A. Hawks, and M. E. Rentschler, “Vision and task assistance using modular wireless in vivo surgical robots,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 6, pp. 1700–1710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Dominguez, L. Durand, J. de Rosa, E. Danguise, C. Arozamena, and P. A. Ferraina, “Retraction and triangulation with neodymium magnetic forceps for single-port laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 23, no. 7, pp. 1660–1666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Park, R. A. Bergs, R. Eberhart, L. Baker, R. Fernandez, and J. A. Cadeddu, “Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor,” Annals of Surgery, vol. 245, no. 3, pp. 379–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. I. S. Zeltser, R. Bergs, R. Fernandez, L. Baker, R. Eberhart, and J. A. Cadeddu, “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, vol. 178, no. 1, pp. 288–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Scott, S. J. Tang, R. Fernandez et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surgical Endoscopy, vol. 21, no. 12, pp. 2308–2316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. L. Best, W. Kabbani, D. J. Scott et al., “Magnetic anchoring and Guidance system instrumentation for laparo-endoscopic single-site surgery/natural orifice transluminal endoscopic surgery: lack of histologic damage after prolonged magnetic coupling across the abdominal wall,” Urology, vol. 77, no. 1, pp. 243–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Structure decision method for self organising robots based on cell structures—CEBOT,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 695–700, Scottsdale, Ariz , USA, May 1989. View at Scopus
  37. E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “A miniaturized wireless control platform for robotic capsular endoscopy using advanced pseudokernel approach,” Sensors and Actuators A, vol. 156, no. 1, pp. 49–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Harada, E. Susilo, A. Menciassi, and P. Dario, “Wireless reconfigurable modules for robotic endoluminal surgery,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2699–2704, Kobe, Japan, May 2009.
  39. K. Harada, S. Russo, T. Ranzani, A. Menciassi, and P. Dario, “Design of Scout Robot as a robotic module for symbiotic multi-robot organisms,” in Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, November 2011.
  40. E. Diller, C. Pawashe, S. Floyd, and M. Sitti, “Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems,” The International Journal of Robotics Research, vol. 30, no. 14, pp. 1667–1680, 2011.