About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2012 (2012), Article ID 694673, 15 pages
http://dx.doi.org/10.1155/2012/694673
Research Article

Fault-Tolerant Control Strategy for Steering Failures in Wheeled Planetary Rovers

1Institute of System Dynamics and Control, German Aerospace Center (DLR), 82205 Weßling, Germany
2Institute of Robotics and Mecatronics, German Aerospace Center (DLR), 82205 Weßling, Germany
3Space Mechanics and Control Division, National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP, Brazil

Received 1 June 2012; Accepted 27 November 2012

Academic Editor: Kazuya Yoshida

Copyright © 2012 Alexandre Carvalho Leite et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Bøgh and M. Blanke, “Fault-tolerant control—a case study of the Ørsted Satellite,” in Proceedings of the IEE Colloquium on Fault Diagnosis in Process Systems, pp. 11.1–11.13, London, UK, April 1997.
  2. T. Steffen, Control Reconfiguration of Dynamical Systems, Springer, New York, NY, USA, 2005.
  3. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, Springer, New York, NY, USA, 2nd edition, 2006.
  4. H. Noura, D. Theillio, J. C. Ponsart, and A. Chamseddine, Fault-Tolerant Control Systems: Design and Practical Applications, Advances in Industrial Control, Springer, New York, NY, USA, 2009.
  5. Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Apfelbeck, S Kuß, B. Rebele et al., “ExoMars Phase B2 breadboard locomotion sub-system test campaign,” in Proceedings of Advanced Space Technologies for Robotics and Automation (ASTRA '11), Nordwijk, The Netherlands, April 2011.
  7. P. C. Leger, A. Trebi-Ollennu, J. R. Wright et al., “Mars exploration Rover surface operations: driving spirit at gusev crater,” in Proceedings of the IEEE Systems, Man and Cybernetics Society, pp. 1815–1822, Waikoloa, Hawaii, USA, October 2005. View at Scopus
  8. D. Zhuo-hua, C. Zi-xing, and Y. Jin-xia, “Fault diagnosis and fault tolerant control for wheeled mobile robots under unknown environments: a survey,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3428–3433, Barcelona, Spain, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bisgaard, D. Vinther, and K. Z. Østergaard, Modelling and Fault-Tolerant Control of an Autonomous Wheeled Robot, Institute of Control Engineering, University of Aalbog, 2004, Project Group 04gr1030a.
  10. B. Schäfer, A. Gibbesch, R. Krenn, and B. Rebele, “Planetary rover mobility simulation on soft and uneven terrain,” Journal of Vehicle System Dynamics, vol. 48, no. 1, pp. 149–169, 2010.
  11. K. Iagnemma, C. Senatore, B. Trease et al., “Terramechanics modeling of Mars surface exploration rovers for simulation and parameter estimation,” in Proceedings of the ASME International Design Engineering Technical Conference, 2011.
  12. G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida, “Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil,” Journal of Field Robotics, vol. 24, no. 3, pp. 233–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Rajamani, Vehicle Dynamics and Control, Springer, New York, NY, USA, 2006.
  14. G. Ishigami, K. Nagatani, and K. Yoshida, “Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '07), pp. 2361–2366, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. D. Wit, H. Khennouf, C. Samson, and O. J. Sordalen, Nonlinear Control Design For Mobile Robots, vol. 11, World Scientific, Singapore, 1993.
  16. G. Ishigami, K. Nagatani, and K. Yoshida, “Slope traversal controls for planetary exploration rover on sandy terrain,” Journal of Field Robotics, vol. 26, no. 3, pp. 264–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Scharringhausen, D. Beermann, O. Krömer, and L. Richter, “A wheel-soil interaction model for planetary applications,” in Proceedings of the 11th European Regional Conference of the International Society for Terrain-Vehicle Systems, Bremen, Germany, October 2009.
  18. A. C. Leite and B. Schäfer, “A comprehensive wheel-terrain contact model for planetary exploration rover design optimization,” in Proceedings of the Joint 9th Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Sapporo, Japan, September 2010.
  19. M. Apfelbeck, S Kuß, A. Wedler, A. Gibbesch, B. Rebele, and B. Schäfer, “A novel terramechanics testbed setup for planetary rover wheel-soil interaction,” in Proceedings of the 11th European Regional Conference of the International Society for Terrain-Vehicle Systems, Bremen, Germany, October 2009.
  20. B. Bäuml and G. Hirzinger, “Agile Robot Development (aRD): a pragmatic approach to robotic software,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 3741–3748, Beijing, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus