About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2013 (2013), Article ID 483095, 15 pages
http://dx.doi.org/10.1155/2013/483095
Research Article

Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA

Received 19 June 2012; Revised 11 December 2012; Accepted 21 December 2012

Academic Editor: Duško Katić

Copyright © 2013 Yueyue Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Wernli, “AUVs-a technology whose time has come,” in Proceedings of the International Symposium on Underwater Technology, pp. 309–314, April 2002.
  2. M. Herman and J. S. Albus, “Overview of the multiple autonomous underwater vehicles (MAUV) project,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 618–620, April 1988.
  3. T. R. Cuff and R. W. Wall, “Support platform and communications to manage cooperative AUV operations (OCEANS '06),” in Proceedings of the Oceans Conference in Asia Pacific, pp. 1–8, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Spenneberg, C. Waldmann, and R. Babb, “Exploration of underwater structures with cooperative heterogeneous robots,” in Proceedings of the Oceans '05—Europe, pp. 782–786, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. M. Sozer, M. Stojanovic, and J. G. Proakis, “Underwater acoustic networks,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 72–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. E. H. Turner and R. M. Turner, “A schema-based approach to cooperative problem solving with autonomous underwater vehicles,” in Proceedings of the Ocean Technologies and Opportunities in the Pacific for the 90's (Oceans'91), vol. 2, pp. 1067–1073, October 1991. View at Scopus
  7. S. M. Smith, K. Ganesan, P. E. An, and S. E. Dunn, “Strategies for simultaneous multiple autonomous underwater vehicle operation and control,” International Journal of Systems Science, vol. 29, no. 10, pp. 1045–1063, 1998. View at Scopus
  8. D. Stilwell and B. Bishop, “Platoons of underwater vehicles,” IEEE Control Systems Magazine, vol. 20, no. 6, pp. 45–52, 2000.
  9. F. Arrichiello, D. N. Liu, S. Yerramalli et al., “Effects of underwater communication constraints on the control of marine robot teams,” in Proceedings of the 2nd International Conference on Robot Communication and Coordination, April 2009. View at Scopus
  10. M. Vajapeyam, S. Vedantam, U. Mitra, J. C. Preisig, and M. Stojanovic, “Distributed space-time cooperative schemes for underwater acoustic communications,” IEEE Journal of Oceanic Engineering, vol. 33, no. 4, pp. 489–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. Sukhatme, “Distributed coordination and data fusion for underwater search,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '11), pp. 349–355, Shanghai, China, May 2011.
  12. C. Schumacher, P. Chandler, M. Pachter, and L. S. Pachter, “Constrained optimization for UAV task assignment,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 3152–3165, Austin, Tex, USA, 2003. View at Scopus
  13. R. M. Turner and E. H. Turner, “Simulating an autonomous oceanographic sampling network: a multi-fidelity approach to simulating systems of systems,” in Proceedings of the Oceans '00, pp. 905–911, September 2000. View at Scopus
  14. H. Bojinov, A. Casal, and T. Hogg, “Emergent structures in modular self-reconfigurable robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1734–1741, San Francisco, Calif, USA, April 2000. View at Scopus
  15. B. Jouvencel, V. Creuze, and P. Baccou, “A new method for multiple AUV coordination a reactive approach,” in Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation (ETFA '01), vol. 1, pp. 51–55, October 2001. View at Scopus
  16. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Liu and D. A. Shell, “Multi-level partitioning and distribution of the assignment problem for large-scale multi-robot task allocation,” in Proceedings of the Robotics: Science and Systems Conference (RSS '11), Los Angeles, Calif, USA, June 2011.
  18. A. Chavez, A. Moukas, and P. Maes, “Challenger: a multi-agent system for distributed resource allocation,” in Proceedings of the 1st International Conference on Autonomous Agents, pp. 323–331, Marina del Rey, Calif, USA, February 1997. View at Scopus
  19. D. P. Bertsekas, “The auction algorithm: a distributed relaxation method for the assignment problem,” Annals of Operations Research, vol. 14, no. 1, pp. 105–123, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sariel and T. R. Balch, “Efficient bids on task allocation for multi-robot exploration,” in Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference (FLAIRS '06), pp. 116–121, May 2006. View at Scopus
  21. M. J. Matarić, G. S. Sukhatme, and E. H. Ostergaard, “Multi-robot task allocation in uncertain environments,” Autonomous Robots, vol. 14, no. 2-3, pp. 255–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Bertsekas, “An Auction Algorithm for Shortest Paths,” webpage: PSU-auction-28, 1991.
  23. K. E. Nygard, P. R. Chandler, and M. Pachter, “Dynamic network flow optimization models for air vehicle resource allocation,” in Proceedings of the American Control Conference, pp. 1853–1858, Arlington, Va, USA, June 2001. View at Scopus
  24. J. W. Mitchell, P. Chandler, M. Pachter, and S. J. Rasmussen, “Communication delays in the cooperative control of wide area search munitions via iterative network flow,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 2003–5665, Austin, Tex, USA, August 2003.
  25. E. Carlson, P. Beaujean, and E. An, “Location-aware routing protocol for underwater acoustic networks,” in Proceedings of the MTS/IEEE Oceans ’06, Boston, Mass, USA, September 2006.
  26. Y. Deng, Task allocation and path planning for acoustic networks of AUVs [Ph.D. thesis], Florida Atlantic University, Boca Raton, Fla, USA, 2010.
  27. B. Jouvencel, V. Creuze, and P. Baccou, “A new method for multiple AUV coordination a reactive approach,” in Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation (ETFA '01), vol. 1, pp. 51–55, October 2001. View at Scopus
  28. J. T. Napoli, T. J. Tarn, J. R. Morrow Jr., and E. An, “Optimal communication control for cooperative autonomous underwater vehicle networks,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1624–1631, Barcelona, Spain, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Martins, J. M. Almeida, and E. Silva, “Coordinated maneuver for gradient search using multiple AUVs,” in Proceedings of the Oceans '03, vol. 1, pp. 347–352, September 2003. View at Scopus
  30. R. Kumar and J. A. Stover, “A behavior-based intelligent control architecture with application to coordination of multiple underwater vehicles,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 30, no. 6, pp. 767–784, 2000. View at Scopus
  31. J. Albus and D. Blidberg, “A control system architecture for multiple autonomous undersea vehicles (MAUV),” in Proceedings of the 5th International Symposium on Unmanned Untethered Submersible Technology, vol. 5, pp. 444–466, June 1987.
  32. J. B. de Sousa and A. Gollu, “Simulation environment for the coordinated operation of multiple autonomous underwater vehicles,” in Proceedings of the Winter Simulation Conference, pp. 1169–1175, December 1997. View at Scopus
  33. Y. C. Sun and C. C. Cheah, “Coordinated control of multiple cooperative underwater vehicle-manipulator systems holding a common load,” in Proceedings of the MTTS/IEEE TECHNO-Ocean '04, vol. 3, pp. 1542–1547, November 2004. View at Scopus
  34. M. R. Benjamin, “Multi-objective autonomous vehicle navigation in the presence of cooperative and adversarial moving contacts,” in Proceedings of the Oceans '02 MTS/IEEE, vol. 3, pp. 1878–1885, October 2002.
  35. M. R. Benjamin, The interval programming: a multi-objective optimization model for autonomous vehicle control [Ph.D. thesis], Brown University, Providence, RI, USA, 2002.
  36. Y. Deng, P. P. J. Beaujean, E. An, and E. A. Carlson, “A path planning control strategy for search-classify task using multiple cooperative underwater vehicles,” in Proceedings of the MTS/IEEE Oceans ’08, Quebec, Canada, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Carlson, P. Beaujean, and E. An, “An Ad Hoc wireless acoustic network simulator applied to multiple underwater vehicle operations in shallow waters using high-frequency acoustic modems,” Journal of Underwater Acoustics, vol. 56, pp. 113–139, 2006.
  38. H. Kenn and A. Pfeil, “A sound source localization sensor using probabilistic occupancy grid maps,” in Proceedings of the Mechatronics and Robotics Conference, pp. 802–807, 2004.
  39. B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration and map-building with continuous localization,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3715–3720, Leuven, Belgium, May 1998. View at Scopus
  40. H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 116–121, St. Louis, Mo, USA, 1985.
  41. A. M. Law and W. D. Kelton, Simulation Modeling & Analysis, McGraw-Hill, 2nd edition, 1991.
  42. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 500–505, St. Louis, Mo, USA, March 1985.