About this Journal Submit a Manuscript Table of Contents
Journal of Robotics
Volume 2013 (2013), Article ID 692838, 7 pages
http://dx.doi.org/10.1155/2013/692838
Research Article

Computationally Efficient Iterative Pose Estimation for Space Robot Based on Vision

Shenzhen Graduate School, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Received 21 May 2012; Accepted 19 December 2012

Academic Editor: Farhad Aghili

Copyright © 2013 Xiang Wu and Ning Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. S. Gao, X. R. Hou, J. Tang, and H. F. Cheng, “Complete solution classification for the perspective-three-point problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 930–943, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Y. Hu and F. C. Wu, “A note on the number of solutions of the noncoplanar P4P problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 550–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: an accurate O(n) solution to the PnP problem,” International Journal of Computer Vision, vol. 81, no. 2, pp. 155–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Lowe, “Fitting parameterized three-dimensional models to images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 5, pp. 441–450, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Weng, N. Ahuja, and T. S. Huang, “Optimal motion and structure estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 864–884, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. X. B. Cao and S. J. Zhang, “An iterative method for vision-based relative pose parameters of RVD spacecrafts,” Journal of Harbin Institute of Technology, vol. 37, no. 8, pp. 1123–1126, 2005. View at Scopus
  8. R. M. Haralick, H. Joo, C. N. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim, “Pose estimation from corresponding point data,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 6, pp. 1426–1446, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. C. P. Lu, G. D. Hager, and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 610–622, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Umeyama, “Least-squares estimation of transformation parameters between two point patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Shijie, L. Fenghua, C. Xibin, and H. Liang, “Monocular vision-based two-stage iterative algorithm for relative position and attitude estimation of docking spacecraft,” Chinese Journal of Aeronautics, vol. 23, no. 2, pp. 204–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Zhang, X. B. Cao, F. Zhang, and L. He, “Monocular vision-based iterative pose estimation algorithm from corresponding feature points,” Science in China, Series F, vol. 53, no. 8, pp. 1682–1696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “A closed-form solution of absolute orientation using orthonomal matrices,” Journal of the Optical Society of America A, vol. 5, pp. 1127–1135, 1988.
  14. B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternion,” Journal of the Optical Society of America A, vol. 4, pp. 629–642, 1987.
  15. M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-D location parameters using dual number quaternions,” CVGIP: Image Understanding, vol. 54, no. 3, pp. 358–367, 1991. View at Scopus
  16. K. S. Arun, T. S. Huang, and S. D. Blostein, “A least-squares fitting of two 3-D point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, pp. 698–700, 1987.
  17. F. L. Markley, “Attitude determination using vector observations: a fast optimal matrix algorithm,” Journal of the Astronautical Sciences, vol. 41, no. 2, pp. 261–280, 1993. View at Scopus
  18. Y. I. Abdel-Aziz and H. M. Karara, “Direct linear transformation into object space coordinates in close-range photogrammetry,” in Proceedings of the Symposium Close-Range Photogrammetry, pp. 1–18, Urbana, Ill, USA, 1971.