About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2009 (2009), Article ID 258489, 15 pages
http://dx.doi.org/10.1155/2009/258489
Review Article

YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends

1FAE—Francisco Albero S.A., R&D Advanced Materials, Rafael Barradas 19, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
2MIND/IN2UB, Electronics Department, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

Received 1 January 2009; Revised 1 June 2009; Accepted 23 July 2009

Academic Editor: Giorgio Sberveglieri

Copyright © 2009 Carlos López-Gándara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Ivers-Tiffèe, K. H. Härdtl, W. Menesklou, and J. Riegel, “Principles of solid state oxygen sensors for lean combustion gas control,” Electrochimica Acta, vol. 47, no. 5, pp. 807–814, 2001. View at Publisher · View at Google Scholar
  2. R. Moos, “A brief overview on automotive exhaust gas sensors based on electroceramics,” International Journal of Applied Ceramic Technology, vol. 2, no. 5, pp. 401–413, 2005. View at Publisher · View at Google Scholar
  3. W. J. Fleming, “Physical principles governing nonideal behavior of the zirconia oxygen sensor,” Journal of the Electrochemical Society, vol. 124, pp. 21–28, 1977.
  4. J. Brettschneider, “Berechnung des luftverhältnisses lambda von luft-kraftstoff-gemischen und des einflusses von messfehlern auf lambda,” Bosch Technische Berichte, vol. 6, pp. 177–186, 1979.
  5. J. Riegel, H. Neumann, and H. M. Wiedenmann, “Exhaust gas sensors for automotive emission control,” Solid State Ionics, vol. 152-153, pp. 783–800, 2002. View at Publisher · View at Google Scholar
  6. A. G. Mortimer and G. P. Reed, “Development of a robust electrochemical oxygen sensor,” Sensors and Actuators B, vol. 24-25, no. 1–3, pp. 328–335, 1995.
  7. A. K. M. S. Chowdhury, S. A. Akbar, S. Kapileshwar, and J. R. Schorr, “A rugged oxygen gas sensor with solid reference for high temperature applications,” Journal of the Electrochemical Society, vol. 148, pp. G91–G94, 2001.
  8. E. van Setten, T. M. Gür, D. H. A. Blank, J. C. Bravman, and M. R. Beasley, “Miniature Nernstian oxygen sensor for deposition and growth environments,” Review of Scientific Instruments, vol. 73, no. 1, p. 156, 2002. View at Publisher · View at Google Scholar
  9. E. Di Bartolomeo, N. Kaabbuathong, M. L. Grilli, and E. Traversa, “Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes,” Solid State Ionics, vol. 171, no. 3-4, pp. 173–181, 2004. View at Publisher · View at Google Scholar
  10. H. Kaneko, T. Okamura, H. Taimatsu, Y. Matsuki, and H. Nishida, “Performance of a miniature zirconia oxygen sensor with a Pd-PdO internal reference,” Sensors and Actuators B, pp. 331–334, 2005. View at Publisher · View at Google Scholar
  11. M. Kleitz and E. Siebert, “Electrode reactions in potentiometric gas sensor,” in Chemical Sensor Technology, T. Seiyama, Ed., vol. 2, pp. 151–171, Kodansha, Tokyo and Elsevier, Amsterdam, The Netherlands, 1989.
  12. M. Kleitz, E. Siebert, P. Fabry, and J. Fouletier, “Solid state electrochemical sensors,” in Sensors: A Comprehensive Survey, T. Seiyama, Ed., vol. 2, pp. 341–428, VCH, Winheim, Germany, 1991.
  13. D. W. McKee, “Interaction of hydrogen and carbon monoxide on platinum group metals,” Journal of Catalysis, vol. 8, no. 3, pp. 240–249, 1967.
  14. J. E. Anderson and Y. B. Graves, “Steady-state characteristics of oxygen concentration cell sensors subjected to nonequilibrium gas mixtures,” Journal of the Electrochemical Society, vol. 128, no. 2, pp. 294–300, 1981.
  15. K. Saji, H. Kondo, T. Takeuchi, and I. Igarashi, “Voltage step characteristics of oxygen concentration cell sensors for nonequilibrium gas mixtures,” Journal of the Electrochemical Society, vol. 135, pp. 1686–1691, 1988.
  16. A. D. Brailsford and E. M. Logothetis, “A steady-state diffusion model for solid-state gas sensors,” Sensors and Actuators, vol. 7, no. 1, pp. 39–67, 1985.
  17. A. D. Brailsford, M. Yussouff, and E. M. Logothetis, “Theory of gas sensors,” Sensors and Actuators B, vol. 13, no. 1–3, pp. 135–138, 1993.
  18. A. D. Brailsford, M. Yussouff, E. M. Logothetis, and M. Shane, “Steady-state model of a zirconia oxygen sensor in a simple gas mixture,” Sensors and Actuators B, vol. 24-25, no. 1–3, pp. 362–365, 1995.
  19. A. D. Brailsford, M. Yussouff, and E. M. Logothetis, “Theory of gas sensors: response of an electrochemical sensor to multi-component gas mixtures,” Sensors and Actuators B, vol. 34, no. 1–3, pp. 407–411, 1996.
  20. A. D. Brailsford, M. Yussouff, and E. M. Logothetis, “Steady state model of electrochemical gas sensors with multiple reactions,” Sensors and Actuators B, vol. 35-36, no. 1–3, pp. 392–397, 1996.
  21. A. D. Brailsford, M. Yussouff, and E. M. Logothetis, “A first-principles model of the zirconia oxygen sensor,” Sensors and Actuators B, vol. 44, no. 1–3, pp. 321–326, 1997.
  22. J. T. Woestman, A. D. Brailsford, M. Shane, and E. M. Logothetis, “A model of the transient response of mass-transfer limited gas sensors,” Sensors and Actuators B, vol. 45, no. 1, pp. 27–33, 1997.
  23. H. Fukunaga, M. Ihara, K. Sakaki, and K. Yamada, “The relationship between overpotential and the three phase boundary length,” Solid State Ionics, vol. 86–88, pp. 1179–1185, 1996. View at Publisher · View at Google Scholar
  24. M. Juhl, S. Primdahl, C. Manon, and M. Mogensen, “Performance/structure correlation for composite SOFC cathodes,” Journal of Power Sources, vol. 61, no. 1-2, pp. 173–181, 1996.
  25. S. P. Yoon, S. W. Nam, J. Han, T. H. Lim, S. A. Hong, and S. H. Hyun, “Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells,” Solid State Ionics, vol. 166, no. 1-2, pp. 1–11, 2004. View at Publisher · View at Google Scholar
  26. R. J. Aaberg, R. Tunold, and R. Odegard, “On the electrochemistry of metal-YSZ single contacts,” Solid State Ionics, vol. 136-137, pp. 707–712, 2000. View at Publisher · View at Google Scholar
  27. S. Sridhar, V. Stancovski, and U. B. Pal, “Effect of oxygen-containing species on the impedance of the Pt/ YSZ interface,” Solid State Ionics, vol. 100, no. 1-2, pp. 17–22, 1997.
  28. J. L. Hertz and H. L. Tuller, “Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ,” Solid State Ionics, vol. 178, no. 13-14, pp. 915–923, 2007. View at Publisher · View at Google Scholar
  29. S. P. Yoon, S. W. Nam, S. G. Kim, S. A. Hong, and S. H. Hyun, “Characteristics of cathodic polarization at Pt/YSZ interface without the effect of electrode microstructure,” Journal of Power Sources, vol. 115, no. 1, pp. 27–34, 2003. View at Publisher · View at Google Scholar
  30. R. O'Hayre, D. Barnett, and F. B. Prinz, “The triple phase boundary: a mathematical model and experimental investigations for fuel cells,” Journal of the Electrochemical Society, vol. 152, pp. 439–444, 2005. View at Publisher · View at Google Scholar
  31. L. Bultel, P. Vernoux, F. Gaillard, C. Roux, and E. Siebert, “Electrochemical and catalytic properties of porous Pt-YSZ composites,” Solid State Ionics, vol. 176, no. 7-8, pp. 793–801, 2005. View at Publisher · View at Google Scholar
  32. T. Jacobsen, B. Zachau-Christiansen, L. Bay, and M. Juhl, “Hysteresis in the solid oxide fuel cell cathode reaction,” Electrochimica Acta, vol. 46, no. 7, pp. 1019–1024, 2001. View at Publisher · View at Google Scholar
  33. T. Jacobsen and L. Bay, “Thermal memory effects at the Pt-YSZ interface,” Electrochimica Acta, vol. 47, pp. 2177–2181, 2002. View at Publisher · View at Google Scholar
  34. A. Jaccoud, G. Foti, R. Wüthrich, H. Jotterand, and C. Comninellis, “Pt/YSZ microstructure and electrochemistry,” Topics in Catalysis, vol. 44, no. 3, pp. 409–417, 2007. View at Publisher · View at Google Scholar
  35. J. Nielsen and T. Jacobsen, “Three-phase boundary dynamics at Pt/YSZ microelectrodes,” Solid State Ionics, vol. 178, pp. 1001–1009, 2007.
  36. E. L. Shoemaker, M. C. Vogt, F. J. Dudek, and T. Turner, “Gas microsensors using cyclic voltammetry with a cermet electrochemical cell,” Sensors and Actuators B, vol. 42, no. 1, pp. 1–9, 1997.
  37. N. Miura, T. Raisen, G. Lu, and N. Yamazoe, “Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes,” Sensors and Actuators B, vol. 47, no. 1–3, pp. 84–91, 1998.
  38. N. Miura, G. Lu, and N. Yamazoe, “Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases,” Solid State Ionics, vol. 136-137, pp. 533–542, 2000. View at Publisher · View at Google Scholar
  39. N. Miura, G. Lu, and N. Yamazoe, “High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode,” Sensors and Actuators B, vol. 52, no. 1-2, pp. 169–178, 1998.
  40. S. Zhuiykov, T. Nakano, A. Kunimoto, and N. Miura, “Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures,” Electrochemistry Communications, vol. 3, no. 2, pp. 97–101, 2001. View at Publisher · View at Google Scholar
  41. N. Miura, S. Zhuiykov, T. Ono, M. Hasei, and N. Yamazoe, “Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature,” Sensors and Actuators B, vol. 81, pp. 222–229, 2002.
  42. N. F. Szabo and P. K. Dutta, “Strategies for total NOx measurement with minimal CO interference utilizing a microporous zeolitic catalytic filter,” Sensors and Actuators B, vol. 88, no. 2, pp. 168–177, 2003. View at Publisher · View at Google Scholar
  43. S. Zhuiykov, “Mathematical modelling of YSZ-based potentiometric gas sensors with oxide sensing electrodes—part I: model of interactions of measuring gas with sensor,” Sensors and Actuators B, vol. 119, no. 2, pp. 456–465, 2006. View at Publisher · View at Google Scholar
  44. S. Zhuiykov, “Mathematical modelling of YSZ-based potentiometric gas sensors with oxide sensing electrodes—part II: complete and numerical models for analysis of sensor characteristics,” Sensors and Actuators B, vol. 120, no. 2, pp. 645–656, 2007. View at Publisher · View at Google Scholar
  45. H. Näfe, “How to check the validity of Nernst's law in a potentiometric solid electrolyte galvanic cell,” Solid State Ionics, vol. 113–115, pp. 205–217, 1998.
  46. M. Er-Raki, M. Hasnaoui, A. Amahmid, and M. Bourich, “Soret driven thermosolutal convection in a shallow porous layer with a stress-free upper surface engineering computations,” International Journal of Computationally Aided Engineering, vol. 22, no. 2, pp. 186–205, 2005.
  47. E. Mutoro, S. Günther, B. Luerßen, I. Valov, and J. Janek, “Electrode activation and degradation: morphology changes of platinum electrodes on YSZ during electrochemical polarisation,” Solid State Ionics, vol. 179, no. 33-34, pp. 1835–1848, 2008. View at Publisher · View at Google Scholar
  48. R. Ramamoorthy, S. A. Akbar, and P. K. Dutta, “Dependence of potentiometric oxygen sensing characteristics on the nature of electrodes,” Sensors and Actuators B, vol. 113, no. 1, pp. 162–168, 2006. View at Publisher · View at Google Scholar
  49. A. Jaccoud, C. Falgairette, G. Fóti, and C. Comninellis, “Charge storage in the O2(g), Pt/YSZ system,” Electrochimica Acta, vol. 52, no. 28, pp. 7927–7935, 2007. View at Publisher · View at Google Scholar
  50. T. Wang, R. F. Novak, and R. E. Soltis, “A study of factors that influence zirconia/platinum interfacial impedance using equivalent circuit analysis,” Sensors and Actuators B, vol. 77, no. 1-2, pp. 132–138, 2001. View at Publisher · View at Google Scholar
  51. G. Reinhardt, R. Mayer, and M. Rösch, “Sensing small molecules with amperometric sensors,” Solid State Ionics, vol. 150, no. 1-2, pp. 79–92, 2002. View at Publisher · View at Google Scholar
  52. M. S. Ugorek, A comparison of microstructure and electrical properties of 8 mol% yttria stabilized zirconia processed under conventional, microwave and fast-fire sintering techniques, Ph.D. thesis, 2004.
  53. L. Y. Woo, L. P. Martin, R. S. Glass, and R. J. Gorte, “Impedance characterization of a model Au/Yttria stabilized zirconia/au electrochemical cell in varying oxygen and NOx concentrations,” Journal of the Electrochemical Society, vol. 154, pp. J129–J135, 2007.
  54. P. Costamagna, M. Panizza, G. Cerisola, and A. Barbucci, “Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach,” Electrochimica Acta, vol. 47, no. 7, pp. 1079–1089, 2002. View at Publisher · View at Google Scholar
  55. W. F. Zhang, P. Schmidt-Zhang, and U. Guth, “Electrochemical studies on cells M/YSZ/Pt (M=Pt , Pt-Ga2O3 ) in NO, O2 , N2 gas mixtures,” Solid State Ionics, vol. 169, pp. 121–128, 2004. View at Publisher · View at Google Scholar
  56. D. Eder and R. Kramer, “Impedance spectroscopy of reduced monoclic zirconia,” Physical Chemistry Chemical Physics, vol. 8, no. 38, pp. 4476–4483, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. P. Ried, C. Lorenz, A. Brönstrup, et al., “Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC,” Journal of the European Ceramic Society, vol. 28, no. 9, pp. 1801–1808, 2008. View at Publisher · View at Google Scholar
  58. J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics : characterization by impedance spectroscopy,” Advanced Materials, vol. 2, no. 3, pp. 132–138, 2004.
  59. V. V. Kharton and F. M. B. Marques, “Interfacial effects in electrochemical cells for oxygen ionic conduction measurements: I. The e.m.f. method,” Solid State Ionics, vol. 140, no. 3-4, pp. 381–394, 2001. View at Publisher · View at Google Scholar
  60. V. V. Kharton, F. M. B. Marques, E. V. Tsipis, et al., “Interfacial effects in electrochemical cells for oxygen ionic conduction measurements: III. Transference numbers vs. grain-boundary resistivity,” Solid State Ionics, vol. 168, no. 1-2, pp. 137–151, 2004. View at Publisher · View at Google Scholar
  61. S. H. Jensen, A. Hauch, P. V. Hendriksen, M. Mogensen, N. Bonanos, and T. Jacobsen, “A method to separate process contributions in impedance spectra by variation of test conditions,” Journal of the Electrochemical Society, vol. 154, pp. B1325–B1330, 2007.
  62. H. Meng and P. K. Shen, “Novel Pt-free catalyst for oxygen electroreduction,” Electrochemistry Communications, vol. 8, no. 4, pp. 588–594, 2006. View at Publisher · View at Google Scholar
  63. J. R. Frade, V. V. Kharton, A. L. Shaula, and F. M. B. Marques, “Interfacial effects in potentiometric oxygen sensors: the role of transport properties and thickness of solid electrolyte ceramics,” Sensor Letters, vol. 6, no. 3, pp. 370–380, 2008. View at Publisher · View at Google Scholar
  64. G. Hsieh, T. O. Mason, and L. R. Pederson, “Experimental limitations in impedance spectroscopy—part I: simulation of reference electrode artifacts in three-point measurements,” Solid State Ionics, vol. 91, no. 3-4, pp. 191–201, 1996. View at Publisher · View at Google Scholar
  65. G. Hsieh, T. O. Mason, and L. R. Pederson, “Experimental limitations in impedance spectroscopy—part II: electrode artifacts in three-point measurements on Pt/YSZ,” Solid State Ionics, vol. 91, no. 3-4, pp. 203–212, 1996. View at Publisher · View at Google Scholar
  66. R. Radhakrishnan, A. V. Virkar, S. C. Singhal, G. C. Dunham, and O. A. Marina, “Design, fabrication and characterization of a miniaturized series-connected potentiometric oxygen sensor,” Sensors and Actuators B, vol. 105, no. 2, pp. 312–321, 2005. View at Publisher · View at Google Scholar
  67. M. Zhou and A. Ahmad, “Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications,” Materials Research Bulletin, vol. 41, no. 4, pp. 690–696, 2006. View at Publisher · View at Google Scholar
  68. E. Caproni, F. M. S. Carvalho, and R. Muccillo, “Development of zirconia-magnesia/zirconia-yttria composite solid electrolytes,” Solid State Ionics, vol. 179, no. 27–32, pp. 1652–1654, 2008. View at Publisher · View at Google Scholar
  69. N. Balakrishnan, T. Takeuch, K. Nomura, H. Kageyama, and Y. Takeda, “Aging effect of 8 mol% YSZ ceramics with different microstructures,” Journal of the Electrochemical Society, vol. 151, pp. 1286–1291, 2004.
  70. M. Ghatee, M. H. Shariat, and J. T. S. Irvine, “Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes,” Solid State Ionics, vol. 180, no. 1, pp. 57–62, 2009. View at Publisher · View at Google Scholar
  71. M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, and F. W. Poulsen, “Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides,” Solid State Ionics, vol. 174, no. 1–4, pp. 279–286, 2004. View at Publisher · View at Google Scholar
  72. X. Guo and R. Waser, “Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria,” Progress in Materials Science, vol. 51, no. 2, pp. 151–210, 2006. View at Publisher · View at Google Scholar
  73. W. Göpel, “Nanostructured sensors for molecular recognition,” Philosophical Transactions of the Royal Society A, vol. 353, pp. 333–354, 1995.
  74. W. Göpel, “Ultimate limits in the miniaturization of chemical sensors,” Sensors and Actuators A, vol. 56, pp. 83–102, 1996.
  75. W. Göpel, “Chemical analysis and sensorics with microstructured devices,” Mikrochimica Acta, vol. 125, pp. 179–196, 1997.
  76. X. Huang and D. Y. Choi, “Chemical sensors based on nanostructured materials,” Sensors and Actuators B, vol. 122, pp. 659–671, 2007.
  77. T. Kimura and T. Goto, “Ir-YSZ nano-composite electrodes for oxygen sensors,” Surface & Coatings Technology, vol. 198, pp. 36–39, 2005.
  78. A. M. Torres-Huerta, J. R. Vargas-García, and M. A. Domínguez-Crespo, “Preparation and characterization of IrO2-YSZ nanocomposite electrodes by MOCVD,” Solid State Ionics, vol. 178, no. 29-30, pp. 1608–1616, 2007. View at Publisher · View at Google Scholar
  79. A. Barbucci, R. Bozzo, G. Cerisola, and P. Costamagna, “Characterisation of SOFC composite cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes,” Electrochimica Acta, vol. 47, pp. 2183–2188, 2002.
  80. X. Wang, H. Huang, T. Holme, X. Tian, and F. B. Prinz, “Thermal stabilities of nanoporous metallic electrodes at elevated temperatures,” Journal of Power Sources, vol. 175, no. 1, pp. 75–81, 2008. View at Publisher · View at Google Scholar
  81. K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, and L. Mao, “Electrochemistry and electroanalytical applications of carbon nanotubes: a review,” Analytical Sciences, vol. 21, no. 12, pp. 1383–1393, 2005. View at Publisher · View at Google Scholar
  82. J. Wang, G. Chen, M. Wang, and M. P. Chatrathi, “Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates,” Analyst, vol. 129, no. 6, pp. 512–515, 2004. View at Publisher · View at Google Scholar · View at PubMed
  83. S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, “Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes,” Analytical Chemistry, vol. 76, no. 4, pp. 1083–1088, 2004. View at Publisher · View at Google Scholar · View at PubMed
  84. P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso, and P. M. Ajayan, “Improved charge transfer at carbon nanotube electrodes,” Advanced Materials, vol. 11, no. 2, pp. 154–157, 1999.
  85. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, vol. 287, no. 5459, pp. 1801–1804, 2000.
  86. U. Cvelbar and M. Mozetič, “Behaviour of oxygen atoms near the surface of nanostructured Nb2O5,” Journal of Applied Physics D, vol. 40, no. 8, pp. 2300–2303, 2007. View at Publisher · View at Google Scholar
  87. N. Wu, M. Zhao, J. G. Zheng, et al., “Porous CuO-ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor,” Nanotechnology, vol. 16, no. 12, pp. 2878–2881, 2005. View at Publisher · View at Google Scholar
  88. X. Li and G. M. Kale, “Novel nanosized ITO electrode for mixed potential gas sensors,” Electrochemistry Solid State Letters, vol. 8, pp. 27–30, 2005.
  89. X. Li and G. M. Kale, “Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor,” Sensors and Actuators B, vol. 120, no. 1, pp. 150–155, 2006. View at Publisher · View at Google Scholar
  90. X. Li and G. M. Kale, “Planar mixed-potential CO sensor utilizing novel BLIO and ITO interface,” Electrochemistry Solid State Letters, vol. 9, pp. 12–15, 2005.
  91. X. Li and G. M. Kale, “Influence of sensing electrode and electrolyte on performance of potentiometric mixed-potential gas sensors,” Sensors and Actuators B, vol. 123, no. 1, pp. 254–261, 2007. View at Publisher · View at Google Scholar
  92. V. V. Plashnitsa, P. Elumalai, and N. Miura, “Sensitive and selective zirconia-based NO2 sensor using gold nanoparticle coatings as sensing electrodes,” Journal of the Electrochemical Society, vol. 155, pp. 301–306, 2008.
  93. J. Zosel, D. Tuchtenhagen, K. Ahlborn, and U. Gith, “Mixed potential gas sensor with short response time,” Sensors and Actuators B, vol. 130, no. 1, pp. 326–329, 2008. View at Publisher · View at Google Scholar
  94. S. Thiemann, R. Hartung, H. Wulff, et al., “Modified Au/YSZ electrodes—preparation, characterization and electrode behaviour at higher temperatures,” Solid State Ionics, vol. 86–88, pp. 873–876, 1996.
  95. L. Chevallier, E. Di Bartolomeo, M. L. Grilli, et al., “Non-nernstian planar sensors based on YSZ with a Nb2O5 electrode,” Sensors and Actuators B, vol. 129, no. 2, pp. 591–597, 2008. View at Publisher · View at Google Scholar
  96. T. Hibino, S. Wang, S. Kakimoto, and M. Sano, “Detection of propylene under oxidizing conditions using zirconia-based potentiometric sensor,” Sensors and Actuators B, vol. 50, 1998.
  97. J. Zosel, K. Ahlborn, R. Müller, D. Westphal, V. Vashook, and U. Guth, “Selectivity of HC-sensitive electrode materials for mixed potential gas sensors,” Solid State Ionics, vol. 169, pp. 115–119, 2004.
  98. V. V. Plashnitsa, T. Ueda, and N. Miura, “Improvement of NO2 a sensing performances by an additional second component to the nano-structured NiO sensing electrode of a YSZ-based mixed-potential-type sensor,” International Journal of Applied Ceramic Technology, vol. 3, no. 2, pp. 127–133, 2007. View at Publisher · View at Google Scholar
  99. E. Di Bartolomeo, N. Kaabbuathong, A. D'Epifanio, et al., “Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers,” Journal of the European Ceramic Society, vol. 24, no. 6, pp. 1187–1190, 2004. View at Publisher · View at Google Scholar
  100. J. W. Yoon, M. L. Grilli, E. D. Bartolomeo, et al., “The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes,” Sensors and Actuators B, vol. 76, pp. 483–488, 2001.
  101. V. V. Plashnitsa, T. Ueda, P. Elumalai, and N. Miura, “NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode,” Sensors and Actuators B, vol. 130, no. 1, pp. 231–239, 2008. View at Publisher · View at Google Scholar
  102. V. V. Plashnitsa, T. Ueda, P. Elumalai, T. Kawaguchi, and N. Miura, “Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO-Au sensing electrode,” Ionics, vol. 14, no. 1, pp. 15–25, 2008. View at Publisher · View at Google Scholar
  103. S. C. Zhang, G. L. Messing, and M. Borden, “Synthesis of solid, spherical zirconia particles by spray pyrolysis,” Journal of the American Ceramics Society, vol. 73, pp. 61–67, 1990.
  104. Y. Q. Xie, “Preparation of ultrafine zirconia particles,” Journal of the American Ceramic Society, vol. 82, pp. 768–770, 1999.
  105. R. Jossen, R. Müller, S. E. Pratsinis, M. Watson, and M. K. Akhtar, “Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles,” Nanotechnology, vol. 16, pp. 609–617, 2005.
  106. I. Kosacki, B. Gorman, and H. U. Anderson, “Microstructure and electrical conductivity in nanocrystalline oxide thin films,” in Ionic and Mixed Conducting Ceramics, T. A. Ramanarayanan, Ed., vol. 3, pp. 631–642, Electrochemical Society, Pennington, NJ, USA, 1998, PV 97-24.
  107. Y. M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, and J. Y. Ying, “Defect and transport properties of nanocrystalline CeO2-x,” Applied Physics Letters, vol. 69, no. 2, pp. 185–187, 1996.
  108. I. Kosacki and H. U. Anderson, “The transport properties of nanocrystalline SrCe0.95Yb0.05O3 thin films,” Applied Physics Letters, vol. 69, no. 27, pp. 4171–4173, 1996.
  109. Y. M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, and J. Y. Ying, “Nonstoichiometry and electrical conductivity of nanocrystalline CeO2x,” Journal of Electroceramics, vol. 1, no. 1, pp. 7–14, 1997.
  110. I. Kosacki, T. Suzuki, V. Petrovsky, and H. U. Anderson, “Electrical conductivity of nanocrystalline ceria and zirconia thin films,” Solid State Ionics, vol. 136-137, pp. 1225–1233, 2000. View at Publisher · View at Google Scholar
  111. I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley, and D. H. Lowndes, “Nanoscale effects on the ionic conductivity in highly textured YSZ thin films,” Solid State Ionics, vol. 176, no. 13-14, pp. 1319–1326, 2005. View at Publisher · View at Google Scholar
  112. A. F. Uvarov, “Estimation of composities conductivity using a general mixing rule,” Solid State Ionics, vol. 136-137, pp. 1267–1272, 2000.
  113. M. F. García-Sánchez, J. Peña, A. Ortiz, et al., “Nanostructured YSZ thin films for solid oxide fuel cells deposited by ultrasonic spray pyrolysis,” Solid State Ionics, vol. 179, no. 7-8, pp. 243–249, 2008. View at Publisher · View at Google Scholar
  114. Q. Zhu and B. Fan, “Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells,” Solid State Ionics, vol. 176, no. 9-10, pp. 889–894, 2005. View at Publisher · View at Google Scholar
  115. T. Yadav and H. Hu, “Nanostructured solid electrolytes and devices,” US patent no. 6387560, 1999.
  116. T. Yadav and H. Hu, “Nanostructured powders and related nanotechnology,” US patent no. 2004/0005485, 2004.
  117. W. N. Lawless, “Ceramic fuel cell,” US patent no. 6372375, 2002.
  118. M. M. Seabaugh, S. L. Swartz, W. J. Dawson, and B. E. McCormick, “Ceramic electrolyte coating and methods,” US patent no. 2005/0026017, 2005.
  119. D. T. Dimitrov and C. D. Dushkin, “Oxygen detection using yttria-stabilized zirconia thin films doped with platinum,” Central European Journal of Chemistry, vol. 3, no. 4, pp. 605–621, 2005. View at Publisher · View at Google Scholar
  120. D. T. Dimitrov, S. Y. Anastosova, and C. D. Dushkin, “Oxygen sensing junctions based on yttria-stabilized zirconia with platinum nanoparticles,” Review of Scientific Instruments, vol. 77, Article ID 056108, 2006.
  121. D. T. Dimitrov, C. D. Dushkin, N. L. Petrova, et al., “Oxygen detection using junctions based on thin films of yttria-stabilized zirconia doped with platinum nanoparticles and pure yttria-stabilized zirconia,” Sensors and Actuators A, vol. 137, no. 1, pp. 86–95, 2007. View at Publisher · View at Google Scholar