About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2012 (2012), Article ID 154586, 6 pages
http://dx.doi.org/10.1155/2012/154586
Research Article

Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source

Departamento de Ingeniería Eléctrica y Electrónica, Universidad Pública de Navarra, Campus Arrosadia S/N, Navarra, 31006 Pamplona, Spain

Received 14 February 2012; Accepted 31 July 2012

Academic Editor: Weiqi Jin

Copyright © 2012 Mikel Bravo and Manuel López-Amo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. López-Higuera, “Introduction to fibre optic sensing technology,” in Handbook of Optical Fibre Sensing Technology, pp. 1–23, 2002. View at Google Scholar
  2. W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” Microwaves Optics and Acoustics, vol. 2, no. 4, pp. 134–140, 1978. View at Google Scholar · View at Scopus
  3. F. J. Arregui, I. R. Matías, C. Bariain, and M. López-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, vol. 3483 of Proceedings of SPIE, pp. 164–168, July 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Sienkiewicz and A. Shukla, “A simple fiber-optic sensor for use over a large displacement range,” Optics and Lasers in Engineering, vol. 28, no. 4, pp. 293–304, 1997. View at Google Scholar · View at Scopus
  5. N. M. P. Pinto, O. Frazão, J. M. Baptista, and J. L. Santos, “Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR,” Optics and Lasers in Engineering, vol. 44, no. 8, pp. 771–778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Bravo, J. Sáenz, M. Bravo-Navas, and M. Lopez-Amo, “Fiber optic sensors for monitoring a concrete beam high strain bending test,” Journal of Lightwave Technology, vol. 30, no. 8, pp. 1085–1089, 2012. View at Google Scholar
  7. M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Hybrid OTDR-fiber laser system for remote sensor multiplexing,” IEEE Sensors Journal, vol. 12, no. 1, pp. 174–178, 2012. View at Google Scholar
  8. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” Journal of Lightwave Technology, vol. 10, no. 5, pp. 544–551, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend losses for standard single mode fibers,” Optics Express, vol. 13, no. 12, pp. 4476–4484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bravo, A. M. R. Pinto, M. López-Amo, J. Kobelke, and K. Schuster, “High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer,” Optics Letters, vol. 37, no. 2, pp. 202–204, 2012. View at Google Scholar
  11. D. S. Nyce, Linear Position Sensor. Theory and Application, John Wiley & Sons, 2004.