About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2012 (2012), Article ID 156583, 17 pages
http://dx.doi.org/10.1155/2012/156583
Research Article

Delamination Detection of Reinforced Concrete Decks Using Modal Identification

1DeepSea (US) Inc., Houston, TX 77042, USA
2Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA

Received 9 June 2012; Accepted 3 August 2012

Academic Editor: Andrea Cusano

Copyright © 2012 Shutao Xing et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Warhus, J. E. Mast, and S. D. Nelson, “Imaging radar for bridge deck inspection,” in Proceedings of the Nondestructive Evaluation of Aging Bridges and Highways, pp. 296–305, Oakland, Calif, USA, June 1995. View at Scopus
  2. J. Broomfield, Corrosion of Steel in Concrete, Understanding, Investigating, and Repair, E & FN Spon, London, UK, 2nd edition, 1997.
  3. C. Q. Li, J. J. Zheng, W. Lawanwisut, and R. E. Melchers, “Concrete delamination caused by steel reinforcement corrosion,” Journal of Materials in Civil Engineering, vol. 19, no. 7, pp. 591–600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Gucunski, Z. Wang, T. Fang, and A. Maher, “Rapid bridge deck condition assessment using three-dimensional visualization of impact echo data,” in Proceedings of the Non-Destructive Testing in Civil Engineering (NDTCE '09), Nantes, France, 2009.
  5. Y. Zou, L. Tong, and G. P. Steven, “Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review,” Journal of Sound and Vibration, vol. 230, no. 2, pp. 357–378, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Diaz Valdes and C. Soutis, “Delamination detection in composite laminates from variations of their modal characteristics,” Journal of Sound and Vibration, vol. 228, no. 1, pp. 1–9, 1999. View at Scopus
  7. C. P. Ratcliffe and W. J. Bagaria, “Vibration technique for locating delamination in a composite beam,” AIAA Journal, vol. 36, no. 6, pp. 1074–1077, 1998. View at Scopus
  8. Z. Wei, L. H. Yam, and L. Cheng, “Delamination assessment of multilayer composite plates using model-based neural networks,” JVC/Journal of Vibration and Control, vol. 11, no. 5, pp. 607–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. J. Yan and L. H. Yam, “Detection of delamination damage in composite plates using energy spectrum of structural dynamic responses decomposed by wavelet analysis,” Computers and Structures, vol. 82, no. 4-5, pp. 347–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Xing, M. W. Halling, and P. J. Barr, “Delamination detection and location in concrete deck by modal identification,” in Proceedings of the Structures Congress, pp. 741–751, Orlando, Fla, USA, 2010.
  11. S. Xing, M. W. Hailing, and P. J. Barr, “Delamination detection in concrete plates using output-only vibration measurements,” in Proceedings of the 29th International Modal Analysis Conference (IMAC '11), pp. 255–262, Jacksonville, Fla, USA, February 2011. View at Scopus
  12. R. Brincker, L. Zhang, and P. Andersen, “Modal identification from ambient responses using frequency domain decomposition,” in Proceedings of the International Modal Analysis Conference (IMAC '00), pp. 625–630, San Antonio, Tex, USA, 2000.
  13. R. Brincker, C. E. Ventura, and P. Anderson, “Damping estimation by frequency domain decomposition,” in Proceedings of the International Modal Analysis Conference (IMAC '01), pp. 698–703, Kissimmee, Fla, USa, 2001.
  14. P. Van Overschee and B. De Moor, “Subspace algorithms for the stochastic identification problem,” Automatica, vol. 29, no. 3, pp. 649–660, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Kluwer Academic, Dordrecht, The Netherlands, 1996.
  16. B. Peeters and G. De Roeck, “Reference-based stochastic subspace identification for output-only modal analysis,” Mechanical Systems and Signal Processing, vol. 13, no. 6, pp. 855–878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Katayama, Subspace Methods for System Identification, Springer, Englewood Cliffs, New Jersey, USA, 1st edition, 2005.
  18. AnsysH Release 10.0 ANSYS theory reference, 2005.
  19. S. Rajendran and D. Q. Song, “Finite element modeling of delamination buckling of composite panel using Ansys,” in Proceedings of the 2nd Asian ANSYS User Conference, Singapore, 1998.
  20. A. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, vol. 31, no. 3, pp. 257–293, 1973.
  21. K. M. Liew, Y. Xiang, S. Kitipornchai, and C. M. Wang, Vibration of Mindlin Plates: Programming the P-Version Ritz Method, Elsevier Science, Oxford, UK, 1998.
  22. Forest Products Laboratory, Wood Handbook: Wood as an Engineering Material, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wis, USA, 2010.
  23. R. S. McBurney and J. T. DROW, “The elastic properties of wood Young's moduli and poisson's ratios of douglas-fir and their relations to moisture content,” Report no. 1528-D, Forest Products Laboratory, Forest Product Service, U.S. Department of Agriculture, 1962.
  24. A. Sliker, “Measuring Poisson's ratios in wood—a method for measuring Poisson's ratios along with Young's moduli in wood is described by the author,” Experimental Mechanics, vol. 12, no. 5, pp. 239–242, 1972. View at Publisher · View at Google Scholar · View at Scopus