About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2012 (2012), Article ID 582159, 11 pages
http://dx.doi.org/10.1155/2012/582159
Review Article

Review of Available Products of Leaf Area Index and Their Suitability over the Formerly Soviet Central Asia

Department of Geography, Georg-August University of Göttingen, Goldschmidtstraße 5, 37077 Göttingen, Germany

Received 7 June 2011; Revised 16 November 2011; Accepted 19 December 2011

Academic Editor: Tuan Guo

Copyright © 2012 M. W. Kappas and P. A. Propastin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Jonckheere, S. Fleck, K. Nackaerts et al., “Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography,” Agricultural and Forest Meteorology, vol. 121, no. 1-2, pp. 19–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. W. Running, P. E. Thornton, and R. Nemani, “Global terrestrial gross and net primary productivity from the earth observing system,” in Methods in Ecosystem Science, O. E. Sala, R. B. Jackson, H. A. Mooney, and R. W. Howarth, Eds., pp. 44–57, Springer, New York, NY, USA, 2000.
  3. J. M. Chen, J. Liu, J. Cihlar, and M. L. Goulden, “Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications,” Ecological Modelling, vol. 124, no. 2-3, pp. 9–119, 1999. View at Scopus
  4. R. Lal, “Carbon sequestration in soils of Central Asia,” Land Degradation and Development, vol. 15, no. 6, pp. 563–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. Henebry, “Global change: carbon in idle croplands,” Nature, vol. 457, no. 7233, pp. 1089–1090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Amthor and D. D. Baldocchi, “Terrestrial higher plant respiration and net primary production,” in Terrestrial Global Productivity, pp. 33–59, Academic Press, 2001.
  7. S. Garrigues, R. Lacaze, F. Baret et al., “Validation and intercomparison of global Leaf Area Index products derived from remote sensing data,” Journal of Geophysical Research G, vol. 113, no. 2, Article ID G02028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Myneni, “Estimation of global leaf area index and absorbed par using radiative transfer models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 6, pp. 1380–1393, 1997. View at Publisher · View at Google Scholar
  9. F. Deng, J. M. Chen, S. Plummer, M. Chen, and J. Pisek, “Algorithm for global leaf area index retrieval using satellite imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp. 2219–2228, 2006. View at Publisher · View at Google Scholar
  10. M. Weiss and F. Baret, “Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data,” Remote Sensing of Environment, vol. 70, no. 3, pp. 293–306, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Knyazikhin, J. V. Martonchik, D. J. Diner et al., “Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data,” Journal of Geophysical Research D, vol. 103, no. 24, pp. 32239–32256, 1998. View at Scopus
  12. C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau, “Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation,” Remote Sensing of Environment, vol. 105, no. 4, pp. 313–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. J. Sellers, S. O. Los, C. J. Tucker et al., “A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data,” Journal of Climate, vol. 9, no. 4, pp. 706–737, 1996. View at Scopus
  14. J. M. Chen, F. Deng, and M. Chen, “Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp. 2230–2237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Gao, J. T. Morisette, R. E. Wolfe et al., “An algorithm to produce temporally and spatially continuous MODIS-LAI time series,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 1, pp. 60–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Tan, J. T. Morisette, R. E. Wolfe et al., “Vegetation phenology metrics derived from temporally smoothed and gap-filled modis data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '08), vol. 3, pp. III593–III596, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Propastin, M. Kappas, and N. R. Muratova, “Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003,” Journal of Environmental Informatics, vol. 12, no. 2, pp. 75–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Friedl, F. W. Davis, J. Michaelsen, and M. A. Moritz, “Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE,” Remote Sensing of Environment, vol. 54, no. 3, pp. 233–246, 1995. View at Scopus
  19. R. Fensholt, I. Sandholt, and M. S. Rasmussen, “Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements,” Remote Sensing of Environment, vol. 91, no. 3-4, pp. 490–507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sensing of Environment, vol. 52, no. 3, pp. 163–172, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Bicheron and M. Leroy, “A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model,” Remote Sensing of Environment, vol. 67, no. 3, pp. 251–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Jacquemoud and S. L. Ustin, “Leaf optical properties: a state of the art,” in Proceedings of the 8th International Symposium Physical Measurements & Signatures in Remote Sensing, pp. 223–232, Aussois, France, 2001.
  23. M. Weiss, F. Baret, G. J. Smith, I. Jonckheere, and P. Coppin, “Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling,” Agricultural and Forest Meteorology, vol. 121, no. 1-2, pp. 37–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Propastin, “Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia,” Remote Sensing of Environment, vol. 113, no. 10, pp. 2234–2242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. O. Scurlock, G. P. Asner, and S. T. Gower, “Worldwide historical estimates of leaf area index, 1932–2000,” ORNL Technical Memorandum ORNL/TM-2001/268, Oak ridge National Laboratory, Oak Ridge, Tenn, USA, 2001.
  26. P. Propastin and M. Kappas, “Mapping Leaf Area Index over semi-desert and steppe biomes in Kazakhstan using satellite imagery and ground measurements,” EARSEL eProceedings, vol. 8, no. 1, pp. 75–92, 2009.
  27. R. H. Whittaker and W. A. Niering, “Vegetation of the Santa Catalina Mountains, Arizona: biomass, production, and diversity along the elevation gradient,” Ecology, vol. 55, pp. 771–790, 1975.
  28. G. P. Asner, J. M. O. Scurlock, and J. A. Hicke, “Global synthesis of leaf area index observations: implications for ecological and remote sensing studies,” Global Ecology and Biogeography, vol. 12, no. 3, pp. 191–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. G. P. Asner, C. A. Wessman, C. A. Bateson, and J. L. Privette, “Impact of tissue, canopy, and landscape factors on the hyperspectral reflectance variability of arid ecosystems,” Remote Sensing of Environment, vol. 74, no. 1, pp. 69–84, 2000. View at Publisher · View at Google Scholar
  30. M. J. Hill, U. Senarath, A. Lee et al., “Assessment of the MODIS LAI product for Australian ecosystems,” Remote Sensing of Environment, vol. 101, no. 4, pp. 495–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Chen and J. Cihlar, “Retrieving leaf area index of boreal conifer forests using landsat TM images,” Remote Sensing of Environment, vol. 55, no. 2, pp. 153–162, 1996. View at Scopus
  32. J. D. White, S. W. Running, R. Nemani, R. E. Keane, and K. C. Ryan, “Measurement and remote sensing of LAI in rocky mountain montane ecosystems,” Canadian Journal of Forest Research, vol. 27, no. 11, pp. 1714–1727, 1997. View at Scopus
  33. W. B. Cohen, T. K. Maiersperger, S. T. Gower, and D. P. Turner, “An improved strategy for regression of biophysical variables and Landsat ETM+ data,” Remote Sensing of Environment, vol. 84, no. 4, pp. 561–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Berterretche, A. T. Hudak, W. B. Cohen, T. K. Maiersperger, S. T. Gower, and J. Dungan, “Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest,” Remote Sensing of Environment, vol. 96, no. 1, pp. 49–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Brown, J. M. Chen, S. G. Leblanc, and J. Cihlar, “A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis,” Remote Sensing of Environment, vol. 71, no. 1, pp. 16–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Pinzon, M. E. Brown, and C. J. Tucker, “Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR 8-km Normalized Difference Vegetation Index (NDVI) data set,” Product Guide, 2004, http://landcover.org/library/guide/GIMMSdocumentation_NDVIg_8km_rev4.pdf.
  37. R. B. Myneni, S. Hoffman, Y. Knyazikhin et al., “Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 214–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Buermann, J. Dong, X. Zeng, R. B. Myneni, and R. E. Dickinson, “Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations,” Journal of Climate, vol. 14, no. 17, pp. 3536–3550, 2001. View at Scopus
  39. W. Verhoef, “Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model,” Remote Sensing of Environment, vol. 16, no. 2, pp. 125–141, 1984. View at Scopus
  40. F. Baret, O. Hagolle, B. Geiger et al., “LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: principles of the algorithm,” Remote Sensing of Environment, vol. 110, no. 3, pp. 275–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Weiss, F. Baret, S. Garrigues, and R. Lacaze, “LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products,” Remote Sensing of Environment, vol. 110, no. 3, pp. 317–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Wang and S. Liang, “Integrating MODIS and CYCLOPES leaf area index products using empirical orthogonal functions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 5, pp. 1513–1519, 2011. View at Publisher · View at Google Scholar
  43. J. L. Roujean and R. Lacaze, “Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: a pragmatic method and its validation,” Journal of Geophysical Research D, vol. 107, no. 12, pp. 6–14, 2002. View at Scopus
  44. Y. Tian, Y. Wang, Y. Zhang, Y. Knyazikhin, J. Bogaert, and R. B. Myneni, “Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions,” Remote Sensing of Environment, vol. 84, no. 1, pp. 143–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Yang, B. Tan, D. Huang et al., “MODIS leaf area index products: from validation to algorithm improvement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 7, pp. 1885–1896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. L. Privette, R. B. Myneni, Y. Knyazikhin et al., “Early spatial and temporal validation of MODIS LAI product in the southern Africa Kalahari,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 232–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Pisek and J. M. Chen, “Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America,” Remote Sensing of Environment, vol. 109, no. 1, pp. 81–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Weiss, F. Baret, S. Garrigues, and R. Lacaze, “LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products,” Remote Sensing of Environment, vol. 110, no. 3, pp. 317–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Sprintsin, A. Karnieli, P. Berliner, E. Rotenberg, D. Yakir, and S. Cohen, “The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone,” Remote Sensing of Environment, vol. 109, no. 4, pp. 416–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Propastin and S. Erasmi, “A physically based approach to model LAI from MODIS 250m data in a tropical region,” International Journal of Applied Earth Observation and Geoinformation, vol. 12, no. 1, pp. 47–59, 2010. View at Publisher · View at Google Scholar
  51. P. Propastin and M. Kappas, “Mapping Leaf Area Index in a semi-arid environment of Kazakshtan using fine-resolution satellite data and in situ measurements,” GIScience & Remote Sensing, vol. 46, no. 2, pp. 212–231, 2009.
  52. P. Propastin and M. Kappas, “Modeling net ecosystem exchange for grassland in Central Kazakhstan by combining remote sensing and field data,” Remote Sensing, vol. 1, no. 3, pp. 159–183, 2009. View at Publisher · View at Google Scholar
  53. P. Propastin, M. Kappas, S. Herrmann, and C. J. Tucker, “Modified light use efficiency model for assessment of carbon sequestration in grasslands of Kazakhstan: combining ground biomass data and remote sensing,” International Journal of Remote Sensing, vol. 33, no. 5, pp. 1465–1487, 2012.
  54. P. Propastin and M. Kappas, “Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements,” Remote Sensing, vol. 4, no. 1, pp. 220–246, 2011.