About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2012 (2012), Article ID 696247, 7 pages
http://dx.doi.org/10.1155/2012/696247
Research Article

Development of Galactose Biosensor Based on Functionalized ZnO Nanorods with Galactose Oxidase

Division of Physical Electronic and Nanotechnology, Department of Science and Technology, Linköping University, Campus Norrköping, 60174 Norrköping, Sweden

Received 31 December 2011; Revised 28 April 2012; Accepted 13 May 2012

Academic Editor: P. Siciliano

Copyright © 2012 K. Khun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Bagnall, Y. F. Chen, Z. Zhu et al., “Optically pumped lasing of ZnO at room temperature,” Applied Physics Letters, vol. 70, no. 17, pp. 2230–2232, 1997. View at Scopus
  2. A. Ohtomo, M. Kawasaki, T. Koida et al., “Double heterostructure based on ZnO and MgxZn1-xO,” Materials Science Forum, vol. 264–268, no. 2, pp. 1463–1466, 1998. View at Scopus
  3. R. D. Vispute, V. Talyansky, S. Choopun et al., “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices,” Applied Physics Letters, vol. 73, no. 3, pp. 348–350, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” Journal of Applied Physics, vol. 87, no. 7, pp. 3573–3575, 2000. View at Scopus
  5. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire elecctrically driven lasers,” Nature, vol. 421, no. 6920, pp. 241–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science, vol. 305, no. 5688, pp. 1269–1273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Letters, vol. 4, no. 10, pp. 1981–1985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Applied Physics Letters, vol. 87, no. 15, Article ID 151103, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Willander, L. L. Yang, A. Wadeasa et al., “Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices,” Journal of Materials Chemistry, vol. 19, no. 7, pp. 1006–1018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhang, J. Wu, C. Zhai, N. Du, X. Ma, and D. Yang, “From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties,” Nanotechnology, vol. 18, no. 45, Article ID 455604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu, and Y. L. Liu, “The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation,” Applied Physics Letters, vol. 91, no. 17, Article ID 173110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Wei, X. W. Sun, J. X. Wang et al., “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Applied Physics Letters, vol. 89, no. 12, Article ID 123902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Umar, M. M. Rahman, S. H. Kim, and Y. B. Hahn, “ZnO nanonails: synthesis and their application as glucose biosensor,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 6, pp. 3216–3221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. C. Tien, P. W. Sadik, D. P. Norton et al., “Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods,” Applied Physics Letters, vol. 87, no. 22, Article ID 222106, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption,” Applied Physics Letters, vol. 91, no. 5, Article ID 053111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. H. Ibupoto, S. M. U. Ali, C. O. Chey, K. Khun, O. Nur, and M. Willander, “Selective zinc ion detection by functionalised ZnO nanorods with ionophore,” Journal of Applied Physics, vol. 110, no. 10, Article ID 04702, 2011.
  17. Z. H. Ibupoto, S. M. U. Ali, K. Khun, C. O. Chey, O. Nur, and M. Willander, “ZnO nanorods based enzymatic biosensor for selective determination of penicillin,” Biosensors, vol. 1, pp. 153–163, 2011.
  18. Z. H. Ibupoto, S. M. U. Ali, K. Khun, and M. Willander, “L-ascorbic acid biosensor based on immobilized enzyme on ZnO nanorods,” Journal of Biosensors and Bioelectronics, vol. 2, no. 3, Article ID 1000110, 2011.
  19. K. Khun, Z. H. Ibupoto, S. M. U. Ali, C. O. Chey, O. Nur, and M. Willander, “Iron ion sensor based on functionalized ZnO nanorods,” Electroanalysis, vol. 23, pp. 1–8, 2011.
  20. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Applied Physics Letters, vol. 86, no. 12, Article ID 123117, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. J. Huang and Y. K. Choi, “Chemical sensors based on nanostructured materials,” Sensors and Actuators, B, vol. 122, no. 2, pp. 659–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, “Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature,” Applied Physics Letters, vol. 91, no. 3, Article ID 032101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Ghosh, M. Dutta, and D. Basak, “Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire arrays,” Applied Physics Letters, vol. 91, no. 7, Article ID 073108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Qiu and S. Yang, “ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing,” Advanced Functional Materials, vol. 17, no. 8, pp. 1345–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology, vol. 19, no. 10, Article ID 105503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Weese, K. Gosnell, P. West, and S. S. Gropper, “Galactose content of baby food meats: considerations for infants with galactosemia,” Journal of the American Dietetic Association, vol. 103, no. 3, pp. 373–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Segal, A. Blair, and H. Roth, “The metabolism of galactose by patients with congenital galactosemia,” The American Journal of Medicine, vol. 38, no. 1, pp. 62–70, 1965. View at Scopus
  28. A. F. Winder, P. Fells, and R. B. Jones, “Galactose intolerance and the risk of cataract,” British Journal of Ophthalmology, vol. 66, no. 7, pp. 438–441, 1982. View at Scopus
  29. G. T. Berry, J. V. Hunter, Z. Wang et al., “In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy,” Journal of Pediatrics, vol. 138, no. 2, pp. 260–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ruiz, S. Jover, M. Armas et al., “Galactosaemia presenting as congenital pseudoafibrinogenaemia,” Journal of Inherited Metabolic Disease, vol. 22, no. 8, pp. 943–944, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. N. V. Guerrero, R. H. Singh, A. Manatunga, G. T. Berry, R. D. Steiner, and L. J. Elsas II, “Risk factors for premature ovarian failure in females with galactosemia,” Journal of Pediatrics, vol. 137, no. 6, pp. 833–841, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K. G. Petry and J. K. V. Reichardt, “The fundamental importance of human galactose metabolism: lessons from genetics and biochemistry,” Trends in Genetics, vol. 14, no. 3, pp. 98–102, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Hansen, “Thin-layer chromatographic method for the identification of mono-, di- and trisaccharides,” Journal of Chromatography A, vol. 107, no. 1, pp. 224–226, 1975. View at Scopus
  34. S. L. Wehrli, R. Reynolds, J. Chen, C. Yager, and S. Segal, “Metabolism of 13C galactose by lymphoblasts from patients with galactosemia determined by NMR spectroscopy,” Molecular Genetics and Metabolism, vol. 77, no. 4, pp. 296–303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Rajendran and J. Irudayaraj, “Detection of glucose, galactose, and lactose in milk with a microdialysis-coupled flow injection amperometric sensor,” Journal of Dairy Science, vol. 85, no. 6, pp. 1357–1361, 2002. View at Scopus
  36. D. Schumacher, J. Vogel, and U. Lerche, “Construction and applications of an enzyme electrode for determination of galactose and galactose-containing saccharides,” Biosensors and Bioelectronics, vol. 9, no. 2, pp. 85–89, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Watanabe and S. Kawasaki, “Determination of galactose in human plasma by HPLC with electrochemical detection,” Biomedical Chromatography, vol. 2, no. 3, pp. 95–98, 1987. View at Scopus
  38. E. E. Szabó, N. Adányi, and M. Váradi, “Application of biosensor for monitoring galactose content,” Biosensors and Bioelectronics, vol. 11, no. 10, pp. 1051–1058, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Ekinci and A. Paşahan, “Poly (4-methoxyphenol) film as a galactose-sensing material,” European Polymer Journal, vol. 40, no. 8, pp. 1605–1608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. K. Sharma, S. K. Singh, N. Sehgal, and A. Kumar, “Biostrip technique for detection of galactose in dairy foods,” Food Chemistry, vol. 88, no. 2, pp. 299–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, “Langmuir-Blodgett film based biosensor for estimation of galactose in milk,” Electrochimica Acta, vol. 49, no. 15, pp. 2479–2485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, “Biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood,” Biotechnology Letters, vol. 26, no. 8, pp. 645–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Wang, S. He, S. Zhang et al., “Controllable synthesis of zno nanostructures by a simple solution route,” Materials Science- Poland, vol. 27, no. 2, pp. 477–484, 2009. View at Scopus
  44. R. H. Garret and C. M. Grisham, Biochemistry, Saunders College Publishing, Orlando, Fla, USA, 1995.
  45. J. A. Cooper, W. Smith, M. Bacila, and H. Medina, “Galactose oxidase from Polyporus circinatus,” The Journal of Biological Chemistry, vol. 234, no. 3, pp. 445–448, 1959. View at Scopus
  46. S. K. Sharma, Suman, C. S. Pundir, N. Sehgal, and A. Kumar, “Galactose sensor based on galactose oxidase immobilized in polyvinyl formal,” Sensors and Actuators, B, vol. 119, no. 1, pp. 15–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. K. N. Lee, Y. Lee, and Y. Son, “Enhanced sensitivity of a galactose biosensor fabricated with a bundle of conducting Polymer microtubules,” Electroanalysis, vol. 23, no. 9, pp. 2125–2130, 2011.
  48. E. Evik, M. Şenel, and M. Fatih Abasyank, “Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene,” Current Applied Physics, vol. 10, no. 5, pp. 1313–1316, 2010. View at Publisher · View at Google Scholar · View at Scopus