About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2012 (2012), Article ID 961239, 8 pages
Research Article

Modelling of Atomic Imaging and Evaporation in the Field Ion Microscope

School of Chemistry and CRANN, Trinity College Dublin, Dublin 2, Ireland

Received 15 June 2011; Revised 17 September 2011; Accepted 18 September 2011

Academic Editor: Sangmin Jeon

Copyright © 2012 Keith J. Fraser and John J. Boland. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Kuk and P. J. Silverman, “Role of tip structure in scanning tunneling microscopy,” Applied Physics Letters, vol. 48, no. 23, pp. 1597–1599, 1986. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Fian and M. Leisch, “Study on tip-substrate interactions by STM and APFIM,” Ultramicroscopy, vol. 95, pp. 189–197, 2003. View at Publisher · View at Google Scholar
  3. T. An, T. Eguchi, K. Akiyama, and Y. Hasegawa, “Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator,” Applied Physics Letters, vol. 87, no. 13, Article ID 133114, pp. 1–3, 2005. View at Publisher · View at Google Scholar
  4. B. P. Geiser, D. J. Larson, S. S. A. Gerstl et al., “A system for simulation of tip evolution under field evaporation,” Microscopy and Microanalysis, vol. 15, supplement 2, pp. 302–303, 2009. View at Publisher · View at Google Scholar
  5. E. A. Marquis, B. P. Geiser, T. J. Prosa, and D. J. Larson, “Evolution of tip shape during field evaporation of complex multilayer structures,” Journal of Microscopy, vol. 241, no. 3, pp. 225–233, 2011. View at Publisher · View at Google Scholar
  6. F. Vurpillot, A. Bostel, and D. Blavette, “A new approach to the interpretation of atom probe field-ion microscopy images,” Ultramicroscopy, vol. 89, no. 1–3, pp. 137–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. G. Forbes, “Field evaporation theory: a review of basic ideas,” Applied Surface Science, vol. 87-88, pp. 1–11, 1995.
  8. M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy, Oxford Science Publications, 1996.
  9. H. J. Kreuzer and K. Nath, “Field evaporation,” Surface Science, vol. 183, no. 3, pp. 591–608, 1987. View at Scopus
  10. D. N. J. White, “A computationally efficient alternative to the Buckingham potential for molecular mechanics calculations,” Journal of Computer-Aided Molecular Design, vol. 11, no. 5, pp. 517–521, 1997. View at Scopus
  11. A. S. Lucier, H. Mortensen, Y. Sun, and P. Grütter, “Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy,” Physical Review B, vol. 72, no. 23, Article ID 235420, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Cross, A. Schirmeisen, A. Stalder, P. Grütter, M. Tschudy, and U. Dürig, “Adhesion interaction between atomically defined tip and sample,” Physical Review Letters, vol. 80, no. 21, pp. 4685–4688, 1998. View at Scopus
  13. T. V. de Bocarmé, T. D. Chau, and N. Kruse, “Imaging and probing catalytic surface reactions on the nanoscale: Field Ion Microscopy and atom-probe studies of O2–H2/Rh and NO–H2/Pt,” Topics in Catalysis, vol. 39, pp. 111–120, 2006.
  14. K. Motai, T. Hashizume, H. Lu, D. Jeon, T. Sakurai, and H. W. Pickering, “STM of the Cu(111)1 × 1 surface and its exposure to chlorine and sulfur,” Applied Surface Science, vol. 67, no. 1–4, pp. 246–251, 1993. View at Scopus
  15. F. Rahman, J. Onoda, K. Imaizumi, and S. Mizuno, “Field-assisted oxygen etching for sharp field-emission tip,” Surface Science, vol. 602, no. 12, pp. 2128–2134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. W. Fink, “Mono-atomic tips for scanning tunneling microscopy,” IBM Journal of Research and Development, vol. 30, p. 460, 1986.