About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2013 (2013), Article ID 481054, 11 pages
http://dx.doi.org/10.1155/2013/481054
Research Article

Modeling a Sensor to Improve Its Efficacy

1W. B. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
2Department of Physics, University at Albany (SUNY), Albany, NY 12222, USA
3Departments of Physics and Informatics, University at Albany (SUNY), Albany, NY 12222, USA

Received 16 March 2013; Accepted 20 May 2013

Academic Editor: Guangming Song

Copyright © 2013 Nabin K. Malakar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. H. Knuth, P. M. Erner, and S. Frasso, “Designing intelligent instruments,” in Proceedings of the 27th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, K. Knuth, A. Caticha, J. Center, A. Giffin, and C. Rodriguez, Eds., vol. 954, pp. 203–211, AIP, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. H. Knuth and J. L. Center Jr., “Autonomous science platforms and question-asking machines,” in Proceedings of the 2nd International Workshop on Cognitive Information Processing (CIP '10), pp. 221–226, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. H. Knuth and J. L. Center, “Autonomous sensor placement,” in Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications, pp. 94–99, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. H. Knuth, “Intelligent machines in the twenty-first century: foundations of inference and inquiry,” Philosophical Transactions of the Royal Society A, vol. 361, no. 1813, pp. 2859–2873, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. N. K. Malakar and K. H. Knuth, “Entropy-based search algorithm for experimental design,” in Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, A. M. Djafari, J. F. Bercher, and P. Bessière, Eds., vol. 1305, pp. 157–164, AIP, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. K. Malakar, K. H. Knuth, and D. J. Lary, “Maximum joint entropy and information-based collaboration of automated learning machines,” in Proceedings of the 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, P. Goyal, A. Giffin, K. H. Knuth, and E. Vrscay, Eds., vol. 1443, pp. 230–237, AIP, 2012.
  7. D. V. Lindley, “On a measure of the information provided by an experiment,” The Annals of Mathematical Statistics, vol. 27, no. 4, pp. 986–1005, 1956. View at Publisher · View at Google Scholar
  8. V. V. Fedorov, Theory of Optimal Experiments, Probability and Mathematical Statistics, Academic Press, 1972.
  9. K. Chaloner and I. Verdinelli, “Bayesian experimental design: a review,” Statistical Science, vol. 10, pp. 273–304, 1995.
  10. P. Sebastiani and H. P. Wynn, “Bayesian experimental design and shannon information,” in 1997 Proceedings of the Section on Bayesian Statistical Science, pp. 176–181, 1997, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6037.
  11. P. Sebastiani and H. P. Wynn, “Maximum entropy sampling and optimal Bayesian experimental design,” Journal of the Royal Statistical Society B, vol. 62, no. 1, pp. 145–157, 2000. View at Scopus
  12. T. J. Loredo and D. F. Cherno, “Bayesian adaptive exploration,” in Proceedings of the 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, G. Erickson and Y. Zhai, Eds., pp. 330–346, AIP, August 2003.
  13. R. Fischer, “Bayesian experimental design—studies for fusion diagnostics,” in Proceedings of the 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 735, pp. 76–83, November 2004.
  14. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Chicago, Ill, USA, 1949.
  15. J. Skilling, “Nested sampling,” in Proceedings of the 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 735, pp. 395–405, 2004.
  16. D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford University Press, New York, NY, USA, 2nd edition, 2006.
  17. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. View at Scopus
  18. W. K. Hastings, “Monte carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970. View at Publisher · View at Google Scholar · View at Scopus
  19. N. K. Malakar, A. J. Mesiti, and K. H. Knuth, “The spatial sensitivity function of a light sensor,” in Proceedings of the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, P. Goggans and C. Y. Chan, Eds., vol. 1193 of AIP Conference Proceedings, pp. 352–359, American Institute of Physics, Oxford, Mass, USA, July 2009. View at Publisher · View at Google Scholar · View at Scopus