About this Journal Submit a Manuscript Table of Contents
Journal of Sensors
Volume 2013 (2013), Article ID 814753, 6 pages
http://dx.doi.org/10.1155/2013/814753
Research Article

Matrix Arrangement of Three-Dimensional Sheath Flow for Multiple Component Nanofibers

1Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2Institute for Nanoscience and Nanotechnology, Waseda University, 513 Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan

Received 26 September 2012; Accepted 1 February 2013

Academic Editor: Takahiro Arakawa

Copyright © 2013 Dong Hyun Yoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. David, “A fine set of threads,” Nature, vol. 411, p. 236, 2001. View at Publisher · View at Google Scholar
  2. A. V. Bazilevsky, A. L. Yarin, and C. M. Megaridis, “Co-electrospinning of core-shell fibers using a single-nozzle technique,” Langmuir, vol. 23, no. 5, pp. 2311–2314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Thangawng, P. B. Howell Jr., J. J. Richards, J. S. Erickson, and F. S. Ligler, “A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers,” Lab on a Chip, vol. 9, no. 21, pp. 3126–3130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Hwang, A. Khademhosseini, Y. Park, K. Sun, and S. Lee, “Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering,” Langmuir, vol. 24, no. 13, pp. 6845–6851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Srivastava, M. Marquez, and T. Thorsen, “Microfluidic electrospinning of biphasic nanofibers with Janus morphology,” Biomicrofluidics, vol. 3, no. 1, Article ID 012801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Lin, H. Wang, and X. Wang, “Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane,” Advanced Materials, vol. 17, no. 22, pp. 2699–2703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-C. Chang, Z.-X. Huang, and R.-J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” Journal of Micromechanics and Microengineering, vol. 17, no. 8, article 009, pp. 1479–1486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Mao, J. R. Waldeisen, and T. J. Huang, “‘Microfluidic drifting’–Implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab on a Chip, vol. 7, no. 10, pp. 1260–1262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Hairer and M. J. Vellekoop, “An integrated flow-cell for full sample stream control,” Microfluidics and Nanofluidics, vol. 7, no. 5, pp. 647–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Kim, D. S. Kim, K. Han, and W. Yang, “An efficient 3-dimensional hydrodynamic focusing microfluidic device by means of locally increased aspect ratio,” Microelectronic Engineering, vol. 86, no. 4–6, pp. 1343–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. B. Howell Jr., J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab on a Chip, vol. 8, no. 7, pp. 1097–1103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Sato, Y. Sasamoto, D. Yagyu, T. Sekiguchi, and S. Shoji, “3D sheath flow using hydrodynamic position control of the sample flow,” Journal of Micromechanics and Microengineering, vol. 17, no. 11, pp. 2211–2216, 2007. View at Publisher · View at Google Scholar · View at Scopus