About this Journal Submit a Manuscript Table of Contents
Journal of Skin Cancer
Volume 2011 (2011), Article ID 454157, 9 pages
http://dx.doi.org/10.1155/2011/454157
Review Article

Induction of Human Squamous Cell-Type Carcinomas by Arsenic

Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3

Received 2 August 2011; Accepted 7 October 2011

Academic Editor: Daniela Massi

Copyright © 2011 Victor D. Martinez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Agency for Research on Cancer (IARC), “Some drinking-water disinfectants and contaminants, including arsenic. Monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 84, pp. 269–477, 2004.
  2. World Health Organization (WHO), WHO Guidelines for Drinking-Water Quality, 1993.
  3. U.S. Environmental Protection Agency (EPA), “National Primary Drinking Water Reguations. Arsenic and Clarifications to Compilance and New Source Contaminants Monitoring, in Final rule. Delay of effective date,” Federal Registry, pp. 16134–16135, 2001.
  4. P. L. Smedley and D. G. Kinniburgh, “A review of the source, behaviour and distribution of arsenic in natural waters,” Applied Geochemistry, vol. 17, no. 5, pp. 517–568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Argos, T. Kalra, B. L. Pierce et al., “A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh,” American Journal of Epidemiology, vol. 174, no. 2, pp. 185–194, 2011. View at Publisher · View at Google Scholar
  6. World Health Organization (WHO), Water Sanitation and Health, World Health Organization, Geneva, Switzerland, 2004.
  7. D. Chakraborti, M. M. Rahman, K. Paul et al., “Arsenic calamity in the Indian subcontinent: what lessons have been learned?” Talanta, vol. 58, no. 1, pp. 3–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Guo, Y. Fujino, J. Chai et al., “The prevalence of subjective symptoms after exposure to arsenic in drinking water in Inner Mongolia, China,” Journal of Epidemiology, vol. 13, no. 4, pp. 211–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Chen, Y. C. Chuang, T. M. Lin, and H. Y. Wu, “Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers,” Cancer Research, vol. 45, no. 11, pp. 5895–5899, 1985. View at Scopus
  10. M. Vahter, “Mechanisms of arsenic biotransformation,” Toxicology, vol. 181-182, pp. 211–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Arsenic, P.H.S. U.S. Department of Health and Human Services, 2007.
  12. D. N. G. Mazumder, “Diagnosis and treatment of chronic arsenic poisoning,” in United Nations Synthesis Report on Arsenic in Drinking Water, 2000.
  13. W. P. Tseng, “Effects and dose response relationships of skin cancer and blackfoot disease with arsenic,” Environmental Health Perspectives, vol. 19, pp. 109–119, 1977. View at Scopus
  14. C. J. Chen, Y. M. Hsueh, M. S. Lai et al., “Increased prevalence of hypertension and long-term arsenic exposure,” Hypertension, vol. 25, no. 1, pp. 53–60, 1995. View at Scopus
  15. R. R. Engel, C. Hopenhayn-Rich, O. Receveur, and A. H. Smith, “Vascular effects of chronic arsenic exposure: a review,” Epidemiologic Reviews, vol. 16, no. 2, pp. 184–209, 1994. View at Scopus
  16. T. Kadono, T. Inaoka, N. Murayama et al., “Skin manifestations of arsenicosis in two villages in Bangladesh,” International Journal of Dermatology, vol. 41, no. 12, pp. 841–846, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Pi, Y. Kumagai, G. Sun et al., “Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia,” Free Radical Biology and Medicine, vol. 28, no. 7, pp. 1137–1142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. Sai Siong Wong, Kong Chong Tan, and Chee Leok Goh, “Cutaneous manifestations of chronic arsenicism: review of seventeen cases,” Journal of the American Academy of Dermatology, vol. 38, no. 2 I, pp. 179–185, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Alain, J. Tousignant, and E. Rozenfarb, “Chronic arsenic toxicity,” International Journal of Dermatology, vol. 32, no. 12, pp. 899–991, 1993. View at Scopus
  20. C. J. Chen and C. J. Wang, “Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms,” Cancer Research, vol. 50, no. 17, pp. 5470–5474, 1990. View at Scopus
  21. A. H. Smith, M. Goycolea, R. Haque, and M. L. Biggs, “Marked increase in bladder and lung cancer mortality in a region of northern chile due to arsenic in drinking water,” American Journal of Epidemiology, vol. 147, no. 7, pp. 660–669, 1998. View at Scopus
  22. C. Hopenhayn-Rich, M. L. Biggs, A. Fuchs et al., “Bladder cancer mortality associated with arsenic in drinking water in Argentina,” Epidemiology, vol. 7, no. 2, pp. 117–124, 1996. View at Scopus
  23. K. H. Morales, L. Ryan, T. L. Kuo, M. M. Wu, and C. J. Chen, “Risk of internal cancers from arsenic in drinking water,” Environmental Health Perspectives, vol. 108, no. 7, pp. 655–661, 2000. View at Scopus
  24. C. Ferreccio, C. González, V. Milosavjlevic, G. Marshall, A. M. Sancha, and A. H. Smith, “Lung cancer and arsenic concentrations in drinking water in Chile,” Epidemiology, vol. 11, no. 6, pp. 673–679, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Marshall, C. Ferreccio, Y. Yuan et al., “Fifty-Year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water,” Journal of the National Cancer Institute, vol. 99, no. 12, pp. 920–928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Smith, C. Hopenhayn-Rich, M. N. Bates et al., “Cancer risks from arsenic in drinking water,” Environmental Health Perspectives, vol. 97, pp. 259–267, 1992. View at Scopus
  27. M. N. Mead, “Arsenic: in search of an antidote to a global poison,” Environmental Health Perspectives, vol. 113, no. 6, pp. A378–A386, 2005. View at Scopus
  28. M. M. Wu, T. L. Kuo, Y. H. Hwang, and C. J. Chen, “Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases,” American Journal of Epidemiology, vol. 130, no. 6, pp. 1123–1132, 1989. View at Scopus
  29. C. J. Chen, T. L. Kuo, and M. M. Wu, “Arsenic and cancers,” The Lancet, vol. 1, no. 8582, pp. 414–415, 1988. View at Scopus
  30. C. J. Chen, C. W. Chen, M. M. Wu, and T. L. Kuo, “Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water,” British Journal of Cancer, vol. 66, no. 5, pp. 888–892, 1992. View at Scopus
  31. M. N. Bates, A. H. Smith, and C. Hopenhayn-Rich, “Arsenic ingestion and internal cancers: a review,” American Journal of Epidemiology, vol. 135, no. 5, pp. 462–476, 1992. View at Scopus
  32. W. R. Cullen, B. C. McBride, and J. Reglinski, “The reaction of methylarsenicals with thiols: some biological implications,” Journal of Inorganic Biochemistry, vol. 21, no. 3, pp. 179–193, 1984. View at Scopus
  33. M. Styblo, et al., “The role of biomethyl-ation in toxicity and carcinogenicity of arsenic: a research update,” Environmental Health Perspectives, vol. 110, p. 767, 2002.
  34. D. J. Thomas, M. Styblo, and S. Lin, “The cellular metabolism and systemic toxicity of arsenic,” Toxicology and Applied Pharmacology, vol. 176, no. 2, pp. 127–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. P. Simeonova and M. I. Luster, “Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms?” Journal of Environmental Pathology, Toxicology and Oncology, vol. 19, no. 3, pp. 281–286, 2000.
  36. X. Ren, C. M. Mchale, C. F. Skibola, A. H. Smith, M. T. Smith, and L. Zhang, “An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis,” Environmental Health Perspectives, vol. 119, no. 1, pp. 11–19, 2011. View at Publisher · View at Google Scholar
  37. J. F. Reichard and A. Puga, “Effects of arsenic exposure on DNA methylation and epigenetic gene regulation,” Epigenomics, vol. 2, no. 1, pp. 87–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. International Agency for Research on Cancer (IARC), “Some drinking-water disinfectants and contaminants, including arsenic,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, pp. 39–267, World Health Organization, Lyon, France, 2004.
  39. National Research Council (NRC), Arsenic in Drinking Water: 2001 Update, National Academy Press, Washington, DC, USA, 2001.
  40. H. R. Guo, N. S. Wang, H. Hu, and R. R. Monson, “Cell type specificity of lung cancer associated with arsenic ingestion,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 4, pp. 638–643, 2004. View at Scopus
  41. P. Ramírez, L. M. Del Razo, M. C. Gutierrez-Ruíz, and M. E. Gonsebatt, “Arsenite induces DNA-protein crosslinks and cytokeratin expression in the WRL-68 human hepatic cell line,” Carcinogenesis, vol. 21, no. 4, pp. 701–706, 2000. View at Scopus
  42. H. R. Guo, H. S. Yu, H. Hu, and R. R. Monson, “Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, R.O.C.),” Cancer Causes and Control, vol. 12, no. 10, pp. 909–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. J. A. Centeno, F. G. Mullick, L. Martinez et al., “Pathology related to chronic arsenic exposure,” Environmental Health Perspectives, vol. 110, no. 5, pp. 883–886, 2002. View at Scopus
  44. H. S. Yu, C. H. Lee, S. H. Jee, C. K. Ho, and Y. L. Guo, “Environmental and occupational skin diseases in Taiwan,” Journal of Dermatology, vol. 28, no. 11, pp. 628–631, 2001. View at Scopus
  45. W. P. Tseng, H. M. Chu, S. W. How, J. M. Fong, C. S. Lin, and S. Yeh, “Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan,” Journal of the National Cancer Institute, vol. 40, no. 3, pp. 453–463, 1968. View at Scopus
  46. S. Yeh, S. W. How, and C. S. Lin, “Arsenical cancer of skin. Histologic study with special reference to Bowen's disease,” Cancer, vol. 21, no. 2, pp. 312–339, 1968. View at Scopus
  47. K. Castrén, A. Ranki, J. A. Welsh, and K. H. Vähäkangas, “Infrequent p53 mutations in arsenic-related skin lesions,” Oncology Research, vol. 10, no. 9, pp. 475–482, 1998. View at Scopus
  48. H. S. Yu, W. T. Liao, and C. Y. Chai, “Arsenic carcinogenesis in the skin,” Journal of Biomedical Science, vol. 13, no. 5, pp. 657–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Ouypornkochagorn and J. Feldmann, “Dermal uptake of arsenic through human skin depends strongly on its speciation,” Environmental Science and Technology, vol. 44, no. 10, pp. 3972–3978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Bernstam, C. H. Lan, J. Lee, and J. O. Nriagu, “Effects of arsenic on human keratinocytes: morphological, physiological, and precursor incorporation studies,” Environmental Research, vol. 89, no. 3, pp. 220–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. T. J. Patterson and R. H. Rice, “Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential,” Toxicology and Applied Pharmacology, vol. 221, no. 1, pp. 119–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. T. J. Patterson, T. V. Reznikova, M. A. Phillips, and R. H. Rice, “Arsenite maintains germinative state in cultured human epidermal cells,” Toxicology and Applied Pharmacology, vol. 207, no. 1, pp. 69–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. J. Morris and C. S. Potten, “Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro,” Cell Proliferation, vol. 27, no. 5, pp. 279–289, 1994. View at Scopus
  54. G. Cotsarelis, T. T. Sun, and R. M. Lavker, “Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis,” Cell, vol. 61, no. 7, pp. 1329–1337, 1990. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Wei, C. S. Trempus, R. E. Cannon, C. D. Bortner, and R. W. Tennant, “Identification of Dss1 as a 12-O-tetradecanoylphorbol-13-acetate-responsive gene expressed in keratinocyte progenitor cells, with possible involvement in early skin tumorigenesis,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1758–1768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. P. Waalkes, J. Liu, D. R. Germolec et al., “Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics,” Cancer Research, vol. 68, no. 20, pp. 8278–8285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Dang, C. Trempus, D. E. Malarkey et al., “Identification of genes and gene ontology processes critical to skin papilloma development in Tg.AC transgenic mice,” Molecular Carcinogenesis, vol. 45, no. 2, pp. 126–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Pi, B. A. Diwan, Y. Sun et al., “Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 651–658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. B. E. Bachmeier, P. Boukamp, R. Lichtinghagen, N. E. Fusenig, and E. Fink, “Matrix metalloproteinases-2,-3,-7,-9 and -10, but not MMP-11, are differentially expressed in normal, benign tumorigenic and malignant human keratinocyte cell lines,” Biological Chemistry, vol. 381, no. 5-6, pp. 497–507, 2000. View at Scopus
  60. E. J. Bernhard, S. B. Gruber, and R. J. Muschel, “Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 10, pp. 4293–4297, 1994. View at Scopus
  61. T. G. Rossman, A. N. Uddin, and F. J. Burns, “Evidence that arsenite acts as a cocarcinogen in skin cancer,” Toxicology and Applied Pharmacology, vol. 198, no. 3, pp. 394–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. Servicio de Salud Antofagasta (Unidad de Registro de Cancer), III Anuario Registro Regional de Cancer Segunda Region Chile 2000 (Incluye informacion 1998—2000), Ministerio de salud, Antofagasta, Chile, 2000.
  63. M. G. Mostafa, J. C. McDonald, and N. Cherry, “Lung cancer and exposure to arsenic in rural Bangladesh,” Occupational and Environmental Medicine, vol. 65, no. 11, pp. 765–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Luchtrath, “The consequences of chronic arsenic poisoning among moselle wine growers. Pathoanatomical investigations of post-mortem examination performed between 1960 and 1977,” Journal of Cancer Research and Clinical Oncology, vol. 105, no. 2, pp. 173–182, 1983. View at Scopus
  65. G. Pershagen, F. Bergman, and J. Klominek, “Histological types of lung cancer among smelter workers exposed to arsenic,” British Journal of Industrial Medicine, vol. 44, no. 7, pp. 454–458, 1987. View at Scopus
  66. O. Axelson, E. Dahlgren, C. D. Jansson, and S. O. Rehnlund, “Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter,” British Journal of Industrial Medicine, vol. 35, no. 1, pp. 8–15, 1978. View at Scopus
  67. M. J. Wicks, V. E. Archer, O. Auerbach, and M. Kuschner, “Arsenic exposure in a copper smelter as related to histological type of lung cancer,” American Journal of Industrial Medicine, vol. 2, no. 1, pp. 25–31, 1981. View at Scopus
  68. D. Taeger, G. Johnen, T. Wiethege et al., “Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners,” International Archives of Occupational and Environmental Health, vol. 82, no. 7, pp. 867–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. E. B. L. Van Dorst, G. N. P. Van Muijen, S. V. Litvinov, and G. J. Fleuren, “The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells,” Journal of Clinical Pathology, vol. 51, no. 9, pp. 679–684, 1998. View at Scopus
  70. M. Osborn and K. Weber, “Intermediate filaments: cell-type-specific markers in differentiation and pathology,” Cell, vol. 31, no. 2, pp. 303–306, 1982. View at Scopus
  71. L. Cao, X. D. Zhou, M. A. Sens et al., “Keratin 6 expression correlates to areas of squamous differentiation in multiple independent isolates of As+3-induced bladder cancer,” Journal of Applied Toxicology, vol. 30, no. 5, pp. 416–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Sun, J. Pi, X. Wang, E. J. Tokar, J. Liu, and M. P. Waalkes, “Aberrant cytokeratin expression during arsenic-induced acquired malignant phenotype in human HaCaT keratinocytes consistent with epidermal carcinogenesis,” Toxicology, vol. 262, no. 2, pp. 162–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. H. S. Yu, K. S. Chiou, G. S. Chen, R. C. Yang, and S. F. Chang, “Progressive alterations of cytokeratin expressions in the process of chronic arsenism,” Journal of Dermatology, vol. 20, no. 12, pp. 741–745, 1993. View at Scopus
  74. R. L. Eckert, J. F. Crish, and N. A. Robinson, “The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation,” Physiological Reviews, vol. 77, no. 2, pp. 397–424, 1997. View at Scopus
  75. M. J. Gerdes and S. H. Yuspa, “The contribution of epidermal stem cells to skin cancer,” Stem Cell Reviews, vol. 1, no. 3, pp. 225–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Liu, S. Lyle, Z. Yang, and G. Cotsarelis, “Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge,” Journal of Investigative Dermatology, vol. 121, no. 5, pp. 963–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Lyle, M. Christofidou-Solomidou, Y. Liu, D. E. Elder, S. Albelda, and G. Cotsarelis, “The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells,” Journal of Cell Science, vol. 111, no. 21, pp. 3179–3188, 1998. View at Scopus
  78. E. Fuchs, “The cytoskeleton and disease: genetic disorders of intermediate filaments,” Annual Review of Genetics, vol. 30, pp. 197–231, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. L. E. Moore, A. H. Smith, C. Eng et al., “Arsenic-related chromosomal alterations in bladder cancer,” Journal of the National Cancer Institute, vol. 94, no. 22, pp. 1688–1696, 2002. View at Scopus
  80. L. I. Hsu, A. W. Chiu, Y. S. Pu et al., “Comparative genomic hybridization study of arsenic-exposed and non-arsenic-exposed urinary transitional cell carcinoma,” Toxicology and Applied Pharmacology, vol. 227, no. 2, pp. 229–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. V. D. Martinez, T. P. H. Buys, M. Adonis et al., “Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas,” British Journal of Cancer, vol. 103, no. 8, pp. 1277–1283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. S. Ishkanian, C. A. Malloff, S. K. Watson et al., “A tiling resolution DNA microarray with complete coverage of the human genome,” Nature Genetics, vol. 36, no. 3, pp. 299–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. S. K. Watson, R. J. deLeeuw, D. E. Horsman, J. A. Squire, and W. L. Lam, “Cytogenetically balanced translocations are associated with focal copy number alterations,” Human Genetics, vol. 120, no. 6, pp. 795–805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Martinez, “Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms,” Molecular Biology International, vol. 2011, Article ID 718974, 11 pages, 2011. View at Publisher · View at Google Scholar
  85. M. J. Mass and L. Wang, “Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis,” Mutation Research, vol. 386, no. 3, pp. 263–277, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Cui, T. Wakai, Y. Shirai, K. Hatakeyama, and S. Hirano, “Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice,” Toxicological Sciences, vol. 91, no. 2, pp. 372–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Zhou, H. Sun, T. P. Ellen, H. Chen, and M. Costa, “Arsenite alters global histone H3 methylation,” Carcinogenesis, vol. 29, no. 9, pp. 1831–1836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. T. J. Jensen, P. Novak, K. E. Eblin, J. A. Gandolfi, and B. W. Futscher, “Epigenetic remodeling during arsenical-induced malignant transformation,” Carcinogenesis, vol. 29, no. 8, pp. 1500–1508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Cui, et al., “MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1,” Journal of Cellular Physiology, vol. 227, no. 2, pp. 772–783, 2012. View at Publisher · View at Google Scholar
  91. Z. Wang, Y. Zhao, E. Smith et al., “Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b,” Toxicological Sciences, vol. 121, no. 1, pp. 110–122, 2011. View at Publisher · View at Google Scholar
  92. D. K. Nordstrom, “Worldwide occurrences of arsenic in ground water,” Science, vol. 296, no. 5576, pp. 2143–2145, 2002. View at Scopus
  93. C. Ferreccio and A. M. Sancha, “Arsenic exposure and its impact on health in Chile,” Journal of Health, Population and Nutrition, vol. 24, no. 2, pp. 164–175, 2006. View at Scopus
  94. A. O. Robson and A. M. Jelliffe, “Medicinal arsenic poisoning and lung cancer,” British Medical Journal, vol. 2, no. 5351, pp. 207–209, 1963. View at Scopus
  95. C. J. Chen, Y. C. Chuang, and S. L. You, “A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan,” British Journal of Cancer, vol. 53, no. 3, pp. 399–405, 1986. View at Scopus
  96. T. Tsuda, A. Babazono, E. Yamamoto et al., “Ingested arsenic and internal cancer: a historical cohort study followed for 33 years,” American Journal of Epidemiology, vol. 141, no. 3, pp. 198–209, 1995. View at Scopus
  97. C. L. Chen, L. I. Hsu, H. Y. Chiou et al., “Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan,” Journal of the American Medical Association, vol. 292, no. 24, pp. 2984–2990, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. C. L. Chen, H. Y. Chiou, L. I. Hsu, Y. M. Hsueh, M. M. Wu, and C. J. Chen Chien-Jen, “Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan,” Environmental Research, vol. 110, no. 5, pp. 455–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. J. E. Heck, A. S. Andrew, T. Onega et al., “Lung cancer in a U.S. population with low to moderate arsenic exposure,” Environmental Health Perspectives, vol. 117, no. 11, pp. 1718–1723, 2009. View at Publisher · View at Google Scholar · View at Scopus