About this Journal Submit a Manuscript Table of Contents
Journal of Skin Cancer
Volume 2012 (2012), Article ID 621968, 8 pages
http://dx.doi.org/10.1155/2012/621968
Review Article

Germ Cell Proteins in Melanoma: Prognosis, Diagnosis, Treatment, and Theories on Expression

1Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
2Anna Fund Melanoma Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Room 912, BRB, 1501 NW 10th Avenue, Miami, FL 33136, USA
3Department of Dermatology and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Room 912, BRB, 1501 NW 10th Avenue, Miami, FL 33136, USA

Received 30 June 2012; Accepted 16 October 2012

Academic Editor: Mohammed Kashani-Sabet

Copyright © 2012 Ashley M. Rosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Knuth, T. Wolfel, E. Klehmann, T. Boon, and K. H. Meyer zum Buschenfelde, “Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2804–2808, 1989. View at Scopus
  2. L. J. Old and Y. T. Chen, “New paths in human cancer serology,” Journal of Experimental Medicine, vol. 187, no. 8, pp. 1163–1167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Scanlan, A. J. Simpson, and L. J. Old, “The cancer/testis genes: review, standardization, and commentary,” Cancer Immunity, vol. 4, p. 1, 2004. View at Scopus
  4. A. J. G. Simpson, O. L. Caballero, A. Jungbluth, Y. T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. L. G. Almeida, N. J. Sakabe, A. R. de Oliveira et al., “CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens,” Nucleic Acids Research, vol. 37, no. 1, pp. D816–D819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Grichnik, “Melanoma, nevogenesis, and stem cell biology,” Journal of Investigative Dermatology, vol. 128, no. 10, pp. 2365–2380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Kondrashov, “Deleterious mutations and the evolution of sexual reproduction,” Nature, vol. 336, no. 6198, pp. 435–440, 1988. View at Scopus
  8. A. Forche, D. Abbey, T. Pisithkul et al., “Stress alters rates and types of loss of heterozygosity in candida albicans,” MBio, vol. 2, no. 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Rosenberg, “Stress-induced loss of heterozygosity in candida: a possible missing link in the ability to evolve,” MBio, vol. 2, no. 5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Walter, M. J. Barysch, S. Behnke et al., “Cancer-testis antigens and immunosurveillance in human cutaneous squamous cell and basal cell carcinomas,” Clinical Cancer Research, vol. 16, no. 14, pp. 3562–3570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Fratta, S. Coral, A. Covre et al., “The biology of cancer testis antigens: putative function, regulation and therapeutic potential,” Molecular Oncology, vol. 5, no. 2, pp. 164–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. E. R. Farmer, R. Gonin, and M. P. Hanna, “Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists,” Human Pathology, vol. 27, no. 6, pp. 528–531, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. S. W. McCarthy and R. A. Scolyer, “Pitfalls and important issues in the pathologic diagnosis of melanocytic tumors,” Ochsner Journal, vol. 10, no. 2, pp. 66–74, 2010. View at Scopus
  14. M. Lüftl, G. Schuler, and A. A. Jungbluth, “Melanoma or not? Cancer testis antigens may help,” British Journal of Dermatology, vol. 151, no. 6, pp. 1213–1218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Davids, S. H. Kidson, and G. S. Hanekom, “Accurate molecular detection of melanoma nodal metastases: an assessment of multimarker assay specificity, sensitivity, and detection rate,” Journal of Clinical Pathology, vol. 56, no. 1, pp. 43–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. V. Kazakov, H. Kutzner, A. Rütten et al., “The anti-MAGE antibody B57 as a diagnostic marker in melanocytic lesions,” American Journal of Dermatopathology, vol. 26, no. 2, pp. 102–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Salemi, A. E. Calogero, E. Vicari et al., “A high percentage of skin melanoma cells expresses SPANX proteins,” American Journal of Dermatopathology, vol. 31, no. 2, pp. 182–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Soikkeli, M. Lukk, P. Nummela et al., “Systematic search for the best gene expression markers for melanoma micrometastasis detection,” Journal of Pathology, vol. 213, no. 2, pp. 180–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Ikeda, B. Lethé, F. Lehmann et al., “Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor,” Immunity, vol. 6, no. 2, pp. 199–208, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Haqq, M. Nosrati, D. Sudilovsky et al., “The gene expression signatures of melanoma progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 6092–6097, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Svobodová, J. Browning, D. MacGregor et al., “Cancer-testis antigen expression in primary cutaneous melanoma has independent prognostic value comparable to that of Breslow thickness, ulceration and mitotic rate,” European Journal of Cancer, vol. 47, no. 3, pp. 460–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. I. N. Mikhaylova, D. A. Kovalevsky, L. F. Morozova et al., “Cancer/testis genes expression in human melanoma cell lines,” Melanoma Research, vol. 18, no. 5, pp. 303–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Vourc'H-Jourdain, C. Volteau, J. M. Nguyen, A. Khammari, and B. Dreno, “Melanoma gene expression and clinical course,” Archives of Dermatological Research, vol. 301, no. 9, pp. 673–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. F. Velazquez, A. A. Jungbluth, M. Yancovitz et al., “Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)—correlation with prognostic factors,” Cancer Immunity, vol. 7, no. 11, 2007. View at Scopus
  25. C. Barrow, J. Browning, D. MacGregor et al., “Tumor antigen expression in melanoma varies according to antigen and stage,” Clinical Cancer Research, vol. 12, no. 3 I, pp. 764–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Goydos, M. Patel, and W. Shih, “NY-ESO-1 and CTp11 expression may correlate with stage of progression in melanoma,” Journal of Surgical Research, vol. 98, no. 2, pp. 76–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. W. Zendman, A. A. Van Kraats, A. I. Den Hollander, U. H. Weidle, D. J. Ruiter, and G. N. P. Van Muijen, “Characterization of XAGE-1b, a short major transcript of cancer/testis-associated gene XAGE-1, induced in melanoma metastasis,” International Journal of Cancer, vol. 97, no. 2, pp. 195–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Roeder, B. Schuler-Thurner, S. Berchtold et al., “MAGE-A3 is a frequent tumor antigen of metastasized melanoma,” Archives of Dermatological Research, vol. 296, no. 7, pp. 314–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Curioni-Fontecedro, N. Nuber, D. Mihic-Probst et al., “Expression of MAGE-C1/CT7 and MAGE-C2/CT10 predicts lymph node metastasis in melanoma patients,” PLoS ONE, vol. 6, no. 6, Article ID e21418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. P. F. Ferrucci, G. Tosti, A. di Pietro et al., “Newly identified tumor antigens as promising cancer vaccine targets for malignant melanoma treatment,” Current Topics in Medicinal Chemistry, vol. 12, no. 1, pp. 11–31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. O. L. Caballero and Y. T. Chen, “Cancer/testis (CT) antigens: potential targets for immunotherapy,” Cancer Science, vol. 100, no. 11, pp. 2014–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Sang, Y. Lian, X. Zhou, and B. Shan, “MAGE-A family: attractive targets for cancer immunotherapy,” Vaccine, vol. 29, no. 47, pp. 8496–8500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Schwabe and M. Lübbert, “Epigenetic lesions in malignant melanoma,” Current Pharmaceutical Biotechnology, vol. 8, no. 6, pp. 382–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Yang, J. Wu, N. Maddodi, Y. Ma, V. Setaluri, and B. J. Longley, “Epigenetic control of MAGE gene expression by the KIT tyrosine kinase,” Journal of Investigative Dermatology, vol. 127, no. 9, pp. 2123–2128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. F. Robbins, R. A. Morgan, S. A. Feldman et al., “Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Park, G. H. Kong, and S. W. Lee, “hMAGE-A1 overexpression reduces TNF-α cytotoxicity in ME-180 cells,” Molecules and Cells, vol. 14, no. 1, pp. 122–129, 2002. View at Scopus
  37. B. Zbytek, J. A. Carlson, J. Granese, J. Ross, M. Mihm, and A. Slominski, “Current concepts of metastasis in melanoma,” Expert Review of Dermatology, vol. 3, no. 5, pp. 569–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Yang, S. M. O'Herrin, J. Wu et al., “MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines,” Cancer Research, vol. 67, no. 20, pp. 9954–9962, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. T. Epping, L. Wang, M. J. Edel, L. Carlée, M. Hernandez, and R. Bernards, “The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling,” Cell, vol. 122, no. 6, pp. 835–847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Laduron, R. Deplus, S. Zhou et al., “MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription,” Nucleic Acids Research, vol. 32, no. 14, pp. 4340–4350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Gjerstorff, L. E. Johansen, O. Nielsen, K. Kock, and H. J. Ditzel, “Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy,” British Journal of Cancer, vol. 94, no. 12, pp. 1864–1873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Koslowski, O. Türeci, C. Bell et al., “Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer,” Cancer Research, vol. 62, no. 22, pp. 6750–6755, 2002. View at Scopus
  43. A. L. Marston and A. Amon, “Meiosis: cell-cycle controls shuffle and deal,” Nature Reviews Molecular Cell Biology, vol. 5, no. 12, pp. 983–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Blasco, “Telomeres and cancer: a tale with many endings,” Current Opinion in Genetics and Development, vol. 13, no. 1, pp. 70–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. N. R. Dos Santos, R. Torensma, T. J. De Vries et al., “Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines,” Cancer Research, vol. 60, no. 6, pp. 1654–1662, 2000. View at Scopus
  46. A. V. Bazhin, N. Wiedemann, M. Schnölzer, D. Schadendorf, and S. B. Eichmüller, “Expression of GAGE family proteins in malignant melanoma,” Cancer Letters, vol. 251, no. 2, pp. 258–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Jungbluth, Y.-T. Chen, E. Stockert et al., “Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues,” International Journal of Cancer, vol. 92, no. 6, pp. 856–860, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Shakib, J. T. Norman, L. G. Fine, L. R. Brown, and J. Godovac-Zimmermann, “Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus,” Proteomics, vol. 5, no. 11, pp. 2819–2838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Roesch, M. Fukunaga-Kalabis, E. C. Schmidt et al., “A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth,” Cell, vol. 141, no. 4, pp. 583–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Janic, L. Mendizabal, S. Llamazares, D. Rossell, and C. Gonzalez, “Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila,” Science, vol. 330, no. 6012, pp. 1824–1827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Bhatia, B. Yang, T. Z. Xiao, N. Peters, M. F. Hoffmann, and B. J. Longley, “Identification of novel small molecules that inhibit protein-protein interactions between MAGE and KAP-1,” Archives of Biochemistry and Biophysics, vol. 508, no. 2, pp. 217–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Yang, S. O'Herrin, J. Wu et al., “Select cancer testes antigens of the MAGE-A, -B, and -C families are expressed in mast cell lines and promote cell viability in vitro and in vivo,” Journal of Investigative Dermatology, vol. 127, no. 2, pp. 267–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. S. L. Müller, “Notch signaling and malignant melanoma,” Advances in Experimental Medicine and Biology, vol. 727, pp. 258–264, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Boussouar and M. Benahmed, “Lactate and energy metabolism in male germ cells,” Trends in Endocrinology and Metabolism, vol. 15, no. 7, pp. 345–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Scopus
  56. D. A. Scott, A. D. Richardson, F. V. Filipp et al., “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” Journal of Biological Chemistry, vol. 286, no. 49, pp. 42626–42634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Goldberg, “Reproductive implications of LDH-C4 and other testis-specific isozymes,” Experimental and Clinical Immunogenetics, vol. 2, no. 2, pp. 120–124, 1985. View at Scopus
  58. O. Türeci, U. Sahin, C. Zwick, M. Koslowski, G. Seitz, and M. Pfreundschuh, “Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5211–5216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. T. Chen, C. A. Venditti, G. Theiler et al., “Identification of CT46/HORMAD1, an immunogenic cancer/testis antigen encoding a putative meiosis-related protein,” Cancer Immunity, vol. 5, p. 9, 2005. View at Scopus
  60. S. Bekaert, H. Derradji, and S. Baatout, “Telomere biology in mammalian germ cells and during development,” Developmental Biology, vol. 274, no. 1, pp. 15–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Batinac, I. Hadžisejdić, G. Brumini, A. Ružić, B. Vojniković, and G. Zamolo, “Expression of cell cycle and apoptosis regulatory proteins and telomerase in melanocitic lesions,” Collegium Antropologicum, vol. 31, no. 1, supplement, pp. 17–22, 2007. View at Scopus
  62. J. K. Soo, A. D. Mackenzie Ross, D. M. Kallenberg et al., “Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression,” Pigment Cell and Melanoma Research, vol. 24, no. 3, pp. 490–503, 2011. View at Publisher · View at Google Scholar · View at Scopus