About this Journal Submit a Manuscript Table of Contents
Journal of Skin Cancer
Volume 2013 (2013), Article ID 828329, 8 pages
Clinical Study

Safety and Efficacy of 188-Rhenium-Labeled Antibody to Melanin in Patients with Metastatic Melanoma

1Hadassah Medical Center, Hebrew University, Kiryat Hadassah, 91120 Jerusalem, Israel
2Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel
3Sackler Faculty of Medicine, Tel Aviv Medical Center, 69978 Tel Aviv, Israel
4Rambam Health Care Campus, 31096 Haifa, Israel
5Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
6Pain Therapeutics, Inc., Austin, TX 78731, USA
7Davis Medical Center, University of California, Sacramento, CA 95817, USA

Received 13 July 2012; Accepted 10 December 2012

Academic Editor: Silvia Moretti

Copyright © 2013 M. Klein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Linos, S. M. Swetter, M. G. Cockburn, G. A. Colditz, and C. A. Clarke, “Increasing burden of melanoma in the United States,” Journal of Investigative Dermatology, vol. 129, no. 7, pp. 1666–1674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Ribas, K. B. Kim, L. M. Schuchter, et al., “BRIM-2: An open-label, multicenter phase II study of vemurafenib in previously treated patients with BRAF V600E mutation-positive metastatic melanoma,” Journal of Clinical Oncology, vol. 29, supplement 1, abstract 8509, 2011.
  4. P. B. Chapman, A. Hauschild, C. Robert, et al., “Phase III randomized, open-label, multicenter trial (BRIM3) comparing BRAF inhibitor vemurafenib with dacarbazine (DTIC) in patients with V600EBRAF-mutated melanoma,” Journal of Clinical Oncology, vol. 29, supplement 1, abstract LBA4, 2011.
  5. D. E. Milenic, E. D. Brady, and M. W. Brechbiel, “Antibody-targeted radiation cancer therapy,” Nature Reviews Drug Discovery, vol. 3, no. 6, pp. 488–498, 2004. View at Scopus
  6. R. M. Sharkey and D. M. Goldenberg, “Perspectives on cancer therapy with radiolabeled monoclonal antibodies,” Journal of Nuclear Medicine, vol. 46, supplement 1, pp. 115S–121S, 2005. View at Scopus
  7. K. A. Cohen-Solal, S. M. Crespo-Carbone, J. Namkoong et al., “Progressive appearance of pigmentation in amelanotic melanoma lesions,” Pigment Cell Research, vol. 15, no. 4, pp. 282–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Busam, K. Hester, C. Charles et al., “Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy,” Archives of Dermatology, vol. 137, no. 7, pp. 923–929, 2001. View at Scopus
  9. A. L. Rosas, J. D. Nosanchuk, M. Feldmesser, et al., “Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents,” Infection and Immunity, vol. 68, no. 5, pp. 2845–2853, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Dadachova, J. D. Nosanchuk, L. Shi et al., “Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radiation by a mAb to melanin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14865–14870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Dadachova, E. Revskaya, M. A. Sesay et al., “Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice,” Cancer Biology and Therapy, vol. 7, no. 7, pp. 1116–1127, 2008. View at Scopus
  12. A. D. Schweitzer, V. Rakesh, E. Revskaya, A. Datta, A. Casadevall, and E. Dadachova, “Computational model predicts effective delivery of 188-Re-labeled melanin-binding antibody to metastatic melanoma tumors with wide range of melanin concentrations,” Melanoma Research, vol. 17, no. 5, pp. 291–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Stabin, R. B. Sparks, and E. Crowe, “OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine,” Journal of Nuclear Medicine, vol. 46, no. 6, pp. 1023–1027, 2005. View at Scopus
  14. B. W. Wessels, W. E. Bolch, L. G. Bouchet et al., “Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1725–1733, 2004. View at Scopus
  15. B. Emami, J. Lyman, A. Brown, et al., “Tolerance of normal tissue to therapeutic irradiation,” International Journal of Radiation Oncology *Biology* Physics, vol. 21, pp. 109–122, 1991.
  16. S. J. DeNardo, K. L. Erickson, E. Benjamin, et al., “Radioimmunotherapy for melanoma,” Clinical Research, vol. 29, pp. 434–440, 1981.
  17. S. M. Larson, J. A. Carrasquillo, and R. W. McGuffin, “Use of I-131 labeled, murine Fab against a high molecular weight antigen of human melanoma: preliminary experience,” Radiology, vol. 155, no. 2, pp. 487–492, 1985. View at Scopus
  18. W. C. Taddei-Peters, M. V. Haspel, P. Vente et al., “Quantitation of human tumor-reactive monoclonal antibody 16.88 in the circulation and localization of 16.88 in colorectal metastatic tumor tissue using murine antiidiotypic antibodies,” Cancer Research, vol. 52, no. 9, pp. 2603–2609, 1992. View at Scopus