About this Journal Submit a Manuscript Table of Contents
Spectroscopy: An International Journal
Volume 27 (2012), Article ID 279650, 8 pages
http://dx.doi.org/10.1155/2012/279650

Specific Far Infrared Spectroscopic Properties of Phospholipids

1Laboratoire de Spectroscopie Vibrationnelle et Electrochemie des Biomolécules, Institut de Chimie, Université de Strasbourg, UMR 7177, 1 rue Blaise Pascal, 67000 Strasbourg Cedex, France
2Strahlentherapie und Radioonkologie, Universität Göttingen, Roberto Koch Strasse 40, 37075 Göttingen, Germany

Copyright © 2012 Ruth Hielscher and Petra Hellwig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Merz and B. Roux, Biological Membranes—A Molecular Perspective from Computation and Experiment, Birkhäuser, Boston, Mass, USA, 1996.
  2. K. J. Einspahr and G. A. Thompson, “Transmembrane signaling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants,” Plant Physiology, vol. 93, no. 2, pp. 361–366, 1990. View at Scopus
  3. M. G. Low, “Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors,” Biochemical Journal, vol. 244, no. 1, pp. 1–13, 1987. View at Scopus
  4. T. H. Haines and N. A. Dencher, “Cardiolipin: a proton trap for oxidative phosphorylation,” FEBS Letters, vol. 528, no. 1–3, pp. 35–39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Hübner, H. H. Mantsch, and M. Kates, “Intramolecular hydrogen bonding in cardiolipin,” Biochimica et Biophysica Acta, vol. 1066, no. 2, pp. 166–174, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Sugimori, H. Kawabe, H. Nagao, and K. Nishikawa, “A DFT study of infrared spectrum of sphingomyelin lipid molecule with calcium cation,” International Journal of Quantum Chemistry, vol. 108, no. 15, pp. 2935–2942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. F. R. Van De Voort, J. Sedman, and T. Russin, “Lipid analysis by vibrational spectroscopy,” European Journal of Lipid Science and Technology, vol. 103, no. 12, pp. 815–826, 2001. View at Scopus
  8. R. N. A. H. Lewis and R. N. McElhaney, “Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes,” in Infrared Spectroscopy of Biomolecules, H. H. Mantsch and D. Chapman, Eds., pp. 159–202, Wiley-Liss, New York, NY, USA, 1996.
  9. R. C. Dougherty, “Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach,” Journal of Chemical Physics, vol. 109, no. 17, pp. 7372–7378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Jeffery, An Introduction to Hydrogen Bonding, Oxford Press, New York, NY, USA, 1997.
  11. G. C. Pimental and A. M. MacClellan, The Hydrogen Bond, Freeman, San Francisco, Calif, USA, 1960.
  12. G. Zundel, B. Brzezinski, and J. Olejnik, “On hydrogen and deuterium bonds as well as on Li+, Na+ and Be2+ bonds: IR continua and cation polarizabilities,” Journal of Molecular Structure, vol. 300, pp. 573–592, 1993. View at Scopus
  13. F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature, vol. 439, no. 7072, pp. 109–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, and P. Roy, “Signatures of the hydrogen bonding in the infrared bands of water,” Journal of Chemical Physics, vol. 122, no. 18, Article ID 184509, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Hielscher, T. Friedrich, and P. Hellwig, “Far- and mid-infrared spectroscopic analysis of the substrate-induced structural dynamics of respiratory complex i,” ChemPhysChem, vol. 12, no. 1, pp. 217–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Heugen, G. Schwaab, E. Bründermann et al., “Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12301–12306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ebbinghaus, J. K. Seung, M. Heyden et al., “An extended dynamical hydration shell around proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20749–20752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. H. Mantsch, A. Martin, and D. G. Cameron, “Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines,” Biochemistry, vol. 20, no. 11, pp. 3138–3145, 1981. View at Scopus
  19. A. V. Popova and D. K. Hincha, “Intermolecular interactions in dry and rehydrated pure and mixed bilayers of phosphatidylcholine and digalactosyldiacylglycerol: a fourier transform infrared spectroscopy study,” Biophysical Journal, vol. 85, no. 3, pp. 1682–1690, 2003. View at Scopus
  20. H. Binder, “Water near lipid membranes as seen by infrared spectroscopy,” European Biophysics Journal, vol. 36, no. 4-5, pp. 265–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Hielscher and P. Hellwig, “The temperature-dependent hydrogen-bonding signature of lipids monitored in the far-infrared domain,” ChemPhysChem, vol. 11, no. 2, pp. 435–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Leberle, I. Kempf, and G. Zundel, “An intramolecular hydrogen bond with large proton polarizability within the head group of phosphatidylserine. An infrared investigation,” Biophysical Journal, vol. 55, no. 4, pp. 637–648, 1989. View at Scopus
  23. M. Klähn, G. Mathias, C. Kötting et al., “IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations,” Journal of Physical Chemistry A, vol. 108, no. 29, pp. 6186–6194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Knözinger, “Far-infrared fourier spectroscopy as a method for structure determination in chemistry,” Angewandte Chemie International Edition, vol. 15, no. 1, pp. 25–39, 1976.
  25. E. Knözinger, “Ferninfrarot-Fourier-Spektroskopie als Methode zur Strukturaufklärung in der Chemie,” Angewandte Chemie, vol. 88, no. 1, pp. 1–16, 1976.
  26. G. Zundel, “The far infrared vibration of hydrogen bonds with large proton polarizability,” Journal of Molecular Structure, vol. 381, no. 1-3, pp. 23–37, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Boggs, “Intermolecular hydrogen bonding between lipids: influence on organization and function of lipids in membranes,” Canadian Journal of Biochemistry, vol. 58, no. 10, pp. 755–770, 1980. View at Scopus
  28. J. M. Boggs, “Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions,” Biochemistry and Cell Biology, vol. 64, no. 1, pp. 50–57, 1986. View at Scopus
  29. J. M. Boggs, “Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function,” Biochimica et Biophysica Acta, vol. 906, no. 3, pp. 353–404, 1987. View at Scopus
  30. I. Pascher, S. Sundell, K. Harlos, and H. Eibl, “Conformation and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol,” Biochimica et Biophysica Acta, vol. 896, no. 1, pp. 77–88, 1987. View at Scopus
  31. J. R. Powell, F. M. Wasacz, and R. J. Jakobsen, “Algorithm for the reproducible spectral subtraction of water from the FT-IR spectra of proteins in dilute solutions and adsorbed monolayers,” Applied Spectroscopy, vol. 40, no. 3, pp. 339–344, 1986. View at Scopus