About this Journal Submit a Manuscript Table of Contents
Journal of Spectroscopy
Volume 2013 (2013), Article ID 272069, 12 pages
http://dx.doi.org/10.1155/2013/272069
Research Article

Vibrational Spectral Studies of Pure and Doped TGSP Crystals

Department of Physics, Karpagam University, Tamilnadu, Coimbatore 641021, India

Received 21 January 2013; Revised 25 March 2013; Accepted 11 April 2013

Academic Editor: Lahcen Bih

Copyright © 2013 N. Kartheeswari and K. Viswanathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Hoshino, Y. Okaya, and R. Pepsinsky, “Crystal structure of the ferroelectric phase of (Glycine)3·H2SO4,” Physical Review, vol. 115, no. 2, pp. 323–330, 1959.
  2. E. M. Mihaylova and H. J. Byrne, “Raman studies of TGS doped with Nd,” Journal of Physics and Chemistry of Solids, vol. 61, no. 12, pp. 1919–1925, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kay and R. Kliengberg, “The crystal structure of triglycine sulfate,” Ferroelectrics, vol. 5, no. 1, pp. 45–52, 1973. View at Publisher · View at Google Scholar
  4. K. Meera, S. Aravazhi, P. Santhana Raghavan, and P. Ramasamy, “Growth and characterisation of L-tyrosine-doped TGS crystals,” Journal of Crystal Growth, vol. 211, no. 1, pp. 220–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. H. V. Alexandru, C. Berbecaru, F. Stanculescu, L. Pintile, I. Matei, and M. Lisca, “Doped TGS crystals for IR detection and sensors,” Sensors and Actuators A, vol. 113, no. 3, pp. 387–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Malyarevich and M. R. Posledovich, “The assignment of lattice vibrations in triglycine sulfate-type crystals,” Journal of Molecular Structure, vol. 375, no. 1-2, pp. 43–51, 1996. View at Scopus
  7. G. Arunmozhi, S. Lanceros-Méndez, and E. de Matos Gomes, “Antiferroelectric ADP doping in ferroelectric TGS crystals,” Materials Letters, vol. 54, no. 5-6, pp. 329–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kalainathan, M. B. Margaret, and T. Irusan, “Morphological changes of L-asparagine doped TGS crystal,” Crystal Engineering, vol. 5, no. 1, pp. 71–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Jayalakshmi and J. Kumar, “Growth and characterization of l-tryptophan-doped ferroelectric TGS crystals,” Journal of Crystal Growth, vol. 310, no. 7–9, pp. 1497–1500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Meera, R. Muralidharan, A. K. Tripathi, and P. Ramasamy, “Growth and characterisation of l-threonine, dl-threonine and l-methionine admixtured TGS crystals,” Journal of Crystal Growth, vol. 263, no. 1–4, pp. 524–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Saxena, V. Gupta, and K. Sreenivas, “Characterization of phosphoric acid doped TGS single crystals,” Journal of Crystal Growth, vol. 263, no. 1–4, pp. 192–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Kulita and M. Trybus, “TGS single crystals doped with lysine: new material for IR detectors,” SPIE Proceedings, vol. 5124, 2003. View at Publisher · View at Google Scholar
  13. K. Meera, R. Muralidharan, P. Santhanaraghavan, R. Gopalakrishnan, and P. Ramasamy, “Growth and characterisation of L-cystine doped TGS crystals,” Journal of Crystal Growth, vol. 226, no. 2-3, pp. 303–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Meera, R. Muralidharan, A. K. Tripathi, R. Dhanasekaran, and P. Ramasamy, “Growth of thiourea-doped TGS crystals and their characterisation,” Journal of Crystal Growth, vol. 260, no. 3-4, pp. 414–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Berbecaru, H. V. Alexandru, L. Pintilie, A. Dutu, B. Logofatu, and R. C. Radulescu, “Doped versus pure TGS crystals,” Materials Science and Engineering B, vol. 118, no. 1–3, pp. 141–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Su, Y. He, H. Yao, Z. Shi, and Q. Wu, “New pyroelectric crystal L-lysine-doped TGS (LLTGS),” Journal of Crystal Growth, vol. 209, no. 1, pp. 220–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Parimaladevi, C. Sekar, and V. Krishnakumar, “The effect of nitric acid (HNO3) on growth, spectral, thermal and dielectric properties of triglycine sulphate (TGS) crystal,” Spectrochimica Acta A, vol. 75, no. 2, pp. 617–623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Meera, A. Claude, R. Muralidharan, C. K. Choi, and P. Ramasamy, “Growth and characterisation of EDTA-added TGS crystals,” Journal of Crystal Growth, vol. 285, no. 3, pp. 358–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Wojciechowski, I. V. Kityk, G. Lakshminarayana et al., “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B, vol. 405, no. 13, pp. 2827–2830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Krishnakumar, S. Sivakumar, R. Nagalakshmi, S. Bhuvaneswari, and M. Rajaboopathi, “Effect of doping an organic molecule ligand on TGS single crystals,” Spectrochimica Acta A, vol. 71, no. 2, pp. 480–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Bharthasarathi, V. Siva Shankar, R. Jayavel, and P. Murugakoothan, “Growth and characterization of biadmixtured TGS single crystals,” Journal of Crystal Growth, vol. 311, no. 4, pp. 1147–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Muralidharan, R. Mohankumar, P. M. Ushasree, R. Jayavel, and P. Ramasamy, “Effect of rare-earth dopants on the growth and properties of triglycine sulphate single crystals,” Journal of Crystal Growth, vol. 234, no. 2-3, pp. 545–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Abu El-Fadl, “Optical properties of TGS crystals doped with metal ions in the vicinity of phase transition,” Physica B, vol. 269, no. 1, pp. 60–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Ćwikiel, B. Fugiel, and M. Mierzwa, “Rigid domain structure in TGS ferroelectric,” Physica B, vol. 293, no. 1-2, pp. 58–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Mohan Kumar, R. Muralidharan, D. Rajan Babu et al., “Growth and characterization of L-lysine doped TGS and TGSP single crystals,” Journal of Crystal Growth, vol. 229, no. 1, pp. 568–573, 2001. View at Scopus
  26. C. Rai, K. Sreenivas, and S. M. Dharmaprakash, “Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal,” Journal of Crystal Growth, vol. 312, no. 2, pp. 273–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. B. Sawyer and C. H. Tower, “Rochelle salt as a dielectric,” Physical Review, vol. 35, no. 3, pp. 269–273, 1930. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Balu, T. R. Rajasekaran, and P. Murugakoothan, “Studies on the growth, structural, optical and mechanical properties of ADP admixtured TGS crystals,” Current Applied Physics, vol. 9, no. 2, pp. 435–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Dawber, I. Farnan, and J. F. Scott, “A classroom experiment to demonstrate ferroelectric hysteresis,” The American Journal of Physics, vol. 71, no. 8, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. S. Ramya, S. Selvasekarapandian, T. Savitha et al., “Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone),” European Polymer Journal, vol. 42, no. 10, pp. 2672–2677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori, “Conductivity and thermal studies of blend polymer electrolytes based on PVAc-PMMA,” Solid State Ionics, vol. 177, no. 26-32, pp. 2679–2682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. V. D. Nithya, R. Jacob Immanuel, S. T. Senthilkumar et al., “Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol-gel method,” Materials Research Bulletin, vol. 47, no. 8, pp. 1861–1868, 2012.
  33. V. D. Nithya and R. Kalai Selvan, “Synthesis, electrical and dielectric properties of FeVO4 nanoparticles,” Physica B, vol. 406, no. 1, pp. 24–29, 2011.