About this Journal Submit a Manuscript Table of Contents
Journal of Spectroscopy
Volume 2013 (2013), Article ID 797232, 7 pages
http://dx.doi.org/10.1155/2013/797232
Research Article

Study of Ultraviolet Emission Spectra in ZnO Thin Films

1Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
2Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China

Received 7 June 2012; Accepted 21 August 2012

Academic Editor: Vincenza Crupi

Copyright © 2013 Y. M. Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. K. Tang, G. K. L. Wong, P. Yu et al., “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Applied Physics Letters, vol. 72, no. 25, pp. 3270–3272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Tsukazaki, A. Ohtomo, T. Onuma et al., “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Materials, vol. 4, no. 1, pp. 42–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. R. Ryu, J. A. Lubguban, T. S. Lee et al., “Excitonic ultraviolet lasing in ZnO-based light emitting devices,” Applied Physics Letters, vol. 90, no. 13, Article ID 131115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van De Walle, “First-principles study of native point defects in ZnO,” Physical Review B, vol. 61, no. 22, pp. 15019–15027, 2000. View at Scopus
  5. A. Janotti and C. G. Van De Walle, “Native point defects in ZnO,” Physical Review B, vol. 76, no. 16, Article ID 165202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Y. Garces, N. C. Giles, L. E. Halliburton et al., “Production of nitrogen acceptors in ZnO by thermal annealing,” Applied Physics Letters, vol. 80, no. 8, pp. 1334–1336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Physical Review Letters, vol. 91, no. 20, Article ID 205502, 2003. View at Scopus
  8. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, “Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE,” Journal of Crystal Growth, vol. 184-185, pp. 605–609, 1998. View at Scopus
  9. Y. Chen, S. K. Hong, H. J. Ko, M. Nakajima, T. Yao, and Y. Segawa, “Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates,” Applied Physics Letters, vol. 76, no. 2, pp. 245–247, 2000. View at Scopus
  10. D. A. Lucca, D. W. Hamby, M. J. Klopfstein, and G. Cantwell, “Chemomechanical polishing effects on the room temperature photoluminescence of bulk ZnO: exciton-LO phonon interaction,” Physica Status Solidi B, vol. 229, pp. 845–848, 2002.
  11. L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” Journal of Applied Physics, vol. 94, no. 2, pp. 973–978, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” Journal of Crystal Growth, vol. 287, no. 1, pp. 169–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, “Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,” Applied Physics Letters, vol. 80, no. 16, pp. 2869–2871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. X. Zhao, M. Willander, R. E. Morjan, Q-H. Hu, and E. E. B. Campbell, “Optical recombination of ZnO nanowires grown on sapphire and Si substrates,” Applied Physics Letters, vol. 83, no. 1, pp. 165–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Wang, H. Iwaki, M. Murakami, X. Du, Y. Ishitani, and A. Yoshikawa, “Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface,” Japanese Journal of Applied Physics, vol. 42, no. 2, pp. L99–L101, 2003. View at Scopus
  16. J. Jie, G. Wang, Y. Chen et al., “Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film,” Applied Physics Letters, vol. 86, no. 3, Article ID 031909, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. F. X. Xiu, Z. Yang, L. J. Mandalapu, et al., “Donor and acceptor competitions in phosphorus-doped ZnO,” Applied Physics Letters, vol. 88, pp. 152116–152118, 2007.
  18. B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 83, no. 8, pp. 1635–1637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Schirra, R. Schneider, A. Reiser et al., “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Physical Review B, vol. 77, no. 12, Article ID 125215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Applied Physics Letters, vol. 81, no. 10, pp. 1830–1832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Sun, Y. M. Lu, Y. C. Liu et al., “Nitrogen-related recombination mechanisms in p -type ZnO films grown by plasma-assisted molecular beam epitaxy,” Journal of Applied Physics, vol. 102, no. 4, Article ID 043522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Ye, S. L. Gu, F. Li et al., “Correlation between carrier recombination and p-type doping in P monodoped and In-P codoped ZnO epilayers,” Applied Physics Letters, vol. 90, no. 15, Article ID 152108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, and M. Grundmann, “Spatially inhomogeneous impurity distribution in ZnO micropillars,” Nano Letters, vol. 4, no. 5, pp. 797–800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” Journal of Crystal Growth, vol. 216, no. 1, pp. 330–334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p -type formation mechanism of arsenic doped p -type ZnO thin film,” Applied Physics Letters, vol. 89, no. 18, Article ID 181103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Klingshirn, “Luminescence of ZnO under high one- and two-quantum excitation,” Physica Status Solidi B, vol. 71, no. 2, pp. 547–556, 1975. View at Scopus
  27. B. Segall and G. D. Mahan, “Phonon-assisted recombination of free excitons in compound semiconductors,” Physical Review, vol. 171, no. 3, pp. 935–948, 1968. View at Publisher · View at Google Scholar · View at Scopus
  28. S. C. Su, Y. M. Lu, Z. Z. Zhang et al., “Oxygen flux influence on the morphological, structural and optical properties of Zn1−xMgxO thin films grown by plasma-assisted molecular beam epitaxy,” Applied Surface Science, vol. 254, no. 15, pp. 4886–4890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. K. Meyer, H. Alves, D. M. Hofmann et al., “Bound exciton and donor-acceptor pair recombinations in ZnO,” Physica Status Solidi B, vol. 241, no. 2, pp. 231–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. D. C. Look, “Electrical and optical properties of p-type ZnO,” Semiconductor Science and Technology, vol. 20, no. 4, pp. S55–S61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Wang and N. C. Giles, “Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy,” Applied Physics Letters, vol. 84, no. 16, pp. 3049–3051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Look, K. D. Leedy, D. H. Tomich, and B. Bayraktaroglu, “Mobility analysis of highly conducting thin films: application to ZnO,” Applied Physics Letters, vol. 96, no. 6, Article ID 062102, 2010. View at Publisher · View at Google Scholar · View at Scopus