About this Journal Submit a Manuscript Table of Contents
Journal of Spectroscopy
Volume 2013 (2013), Article ID 841409, 11 pages
http://dx.doi.org/10.1155/2013/841409
Research Article

Inclusion Complexes of Sunscreen Agents with β-Cyclodextrin: Spectroscopic and Molecular Modeling Studies

1Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
2Department of Applied Chemical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
3Alfa Chemical Manufacturing Co., P.O. Box 1880, Amman 11118, Jordan

Received 21 January 2013; Revised 1 April 2013; Accepted 12 April 2013

Academic Editor: Alaa Eldin Salem

Copyright © 2013 Nathir A. F. Al-Rawashdeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer, Berlin, Germany, 1978.
  2. H. Dodziuk, Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, Wiley-VCH, Weinheim, Germany, 2006.
  3. J. Szejtli, “Introduction and general overview of cyclodextrin chemistry,” Chemical Reviews, vol. 98, no. 5, pp. 1743–1753, 1998. View at Scopus
  4. D. Duchêne, Cyclodextrins and Their Industrial Uses, De Santé, Paris, France, 1987.
  5. S. Z. Lin, D. Wouessidjewe, M. C. Poelman, and D. Duchêne, “Indomethacin and cyclodextrin complexes,” International Journal of Pharmaceutics, vol. 69, no. 3, pp. 211–219, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. A. D. Bani-Yaseen, N. F. Al-Rawashdeh, and I. Al-Momani, “Influence of inclusion complexation with β-cyclodextrin on the photostability of selected imidazoline-derived drugs,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 63, no. 1-2, pp. 109–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Dawoud and N. Al-Rawashdeh, “Spectrofluorometric, thermal, and molecular mechanics studies of the inclusion complexation of selected imidazoline-derived drugs with β-cyclodextrin in aqueous media,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 60, no. 3-4, pp. 293–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. A. F. Al-Rawashdeh, “Interactions of nabumetone with γ-cyclodextrin studied by fluorescence measurements,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 51, no. 1, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. A. F. Al-Rawashdeh, I. A. Abu-Yousef, and S. M. Kanan, “Cyclic voltammetry study of asymmetrical trityl di- and trisulfides on coated and bare gold electrodes,” Journal of Physical Chemistry C, vol. 112, no. 17, pp. 7062–7068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. A. F. Al-Rawashdeh, A. M. Al-Ajlouni, S. B. Bukallah, and N. Bataineh, “Activation of H2O2 by methyltrioxorhenium(VII) inside b-cyclodextrin,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 70, no. 3-4, pp. 471–480, 2011. View at Publisher · View at Google Scholar
  11. G. Cravotto, A. Binello, E. Baranelli, P. Carraro, and F. Trotta, “Cyclodextrins as food additives and in food processing,” Current Nutrition and Food Science, vol. 2, no. 4, pp. 343–350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Loftsson and D. Duchêne, “Cyclodextrins and their pharmaceutical applications,” International Journal of Pharmaceutics, vol. 329, pp. 1–11, 2007. View at Publisher · View at Google Scholar
  13. D. L. Kirschner, M. Jaramillo, and T. K. Green, “Enantioseparation and stacking of cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated β-cyclodextrin,” Analytical Chemistry, vol. 79, no. 2, pp. 736–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. S. Yang, D. M. Chen, Y. Yang et al., “Enantioseparation of some clinically used drugs by capillary electrophoresis using sulfated β-cyclodextrin as a chiral selector,” Chromatographia, vol. 62, no. 7-8, pp. 441–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. H. Henley, R. T. Wilburn, A. M. Crouch, and J. W. Jorgenson, “Flow counterbalanced capillary electrophoresis using packed capillary columns: resolution of enantiomers and isotopomers,” Analytical Chemistry, vol. 77, no. 21, pp. 7024–7031, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Wistuba, J. Kang, and V. Schurig, “Chiral separation by capillary electrochromatography using cyclodextrin phases,” Methods in Molecular Biology, vol. 243, pp. 401–409, 2004. View at Scopus
  17. V. Pino, A. W. Lantz, J. L. Anderson, A. Berthod, and D. W. Armstrong, “Theory and use of the pseudophase model in gas-liquid chromatographic enantiomeric separations,” Analytical Chemistry, vol. 78, no. 1, pp. 113–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Zhong, L. He, T. E. Beesley et al., “Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography,” Journal of Chromatography A, vol. 1115, no. 1-2, pp. 19–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Singh, R. Sharma, and U. C. Banerjee, “Biotechnological applications of cyclodextrins,” Biotechnology Advances, vol. 20, no. 5-6, pp. 341–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Qi and W. Zimmermann, “Cyclodextrin glucanotransferase: from gene to applications,” Applied Microbiology and Biotechnology, vol. 66, no. 5, pp. 475–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. A. F. Al-Rawashdeh, K. S. Al-Sadeh, and M. B. Al-Bitar, “Physicochemical study on microencapsulation of hydroxypropyl-β-cyclodextrin in dermal preparations,” Drug Development and Industrial Pharmacy, vol. 36, no. 6, pp. 688–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Motwani and J. Zatz, “Applications of cyclodextrins in skin products,” Cosmetics & Toiletries, vol. 112, pp. 39–47, 1997.
  23. E. Kurul and S. Hekimoglu, “Skin permeation of two different benzophenone derivatives from various vehicles,” International Journal of Cosmetic Science, vol. 23, no. 4, pp. 211–218, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Scalia, A. Casolari, A. Iaconinoto, and S. Simeoni, “Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 4, pp. 1181–1189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. B. Lipkowit, “Applications of computational chemistry to the Study of Cyclodextrins,” Chemical Reviews, vol. 98, pp. 1829–1874, 1998. View at Publisher · View at Google Scholar
  26. E. A. Castro and D. A. J. Barbiric, “Molecular modeling and cyclodextrins: a relationship strengthened by complexes,” Current Organic Chemistry, vol. 10, no. 7, pp. 715–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Thompson and J. A. Larsson, “Modeling competitive guest binding to β-cyclodextrin molecular printboards,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16640–16645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Harata, “The structure of the cyclodextrin complexes. XIII. Crystal structure of b cyclodextrin-1, 4-diazabicyclo[1. 2.2] octane complex tridecahydrate,” Bulletin of the Chemical Society of Japan, vol. 55, pp. 2315–2320, 1982. View at Publisher · View at Google Scholar
  29. S. Pattanaargson, T. Munhapol, P. Hirunsupachot, and P. Luangthongaram, “Photoisomerization of octyl methoxycinnamate,” Journal of Photochemistry and Photobiology A, vol. 161, no. 2-3, pp. 269–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Pattanaargson and P. Limphong, “Stability of octyl methoxycinnamate and identification of its photo-degradation product,” International Journal of Cosmetic Science, vol. 23, no. 3, pp. 153–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Trotta, M. Zanetti, and G. Camino, “Thermal degradation of cyclodextrins,” Polymer Degradation and Stability, vol. 69, no. 3, pp. 373–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Giordano, C. Novak, and J. R. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds,” Thermochimica Acta, vol. 380, no. 2, pp. 123–151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Kohata, K. Jyodoi, and A. Ohyoshi, “Thermal decomposition of cyclodextrins (α-, β-, γ-, and modified β-CyD) and of metal-(β-CyD) complexes in the solid phase,” Thermochimica Acta, vol. 217, pp. 187–198, 1993. View at Scopus
  34. M. K. Ghorab and M. C. Adeyeye, “Elucidation of solution state complexation in wet-granulated oven-dried ibuprofen and β-cyclodextrin: FT-IR and 1H-NMR studies,” Pharmaceutical Development and Technology, vol. 6, no. 3, pp. 315–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Loftsson and M. Masson, “Cyclodextrins in topical drug formulations: theory and practice,” International Journal of Pharmaceutics, vol. 225, no. 1-2, pp. 15–30, 2001. View at Publisher · View at Google Scholar · View at Scopus