Journal of Spectroscopy The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis Wed, 17 Dec 2014 07:55:00 +0000 A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1) at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2) the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3) the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4) the catalyst activity can be influenced by calcination time of silver, (5) different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6) the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h. Lei Zhang, Sha Xiang-ling, Lei Zhang, Wang Rui, Zhang Lixin, and Shu Xinqian Copyright © 2014 Lei Zhang et al. All rights reserved. Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans) Bioleaching Copper from Flexible PCB by ICP-AES Mon, 17 Nov 2014 00:00:00 +0000 In order to improve copper leaching efficiency from the flexible printed circuit board (PCB) by Acidithiobacillus ferrooxidans, it is necessary to quantitatively measure the bacteria bioleaching copper under extreme acidic condition from flexible PCB. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is a very accurate way to analyze metals in solution; this paper investigated the optimal conditions for copper bioleaching by Acidithiobacillus ferrooxidans from flexible PCB through ICP-AES. The conditions included particle size of flexible PCB powder, quantity of flexible PCB powder, initial pH of culture medium, bacteria inoculation, bacteria activation time, and quantity of FeSO4·7H2O. Prior to ICP-AES measurement, culture solution was digested by aqua regia. The experimental results demonstrated that flexible PCB contained one main metal (copper); this was associated with the structure of flexible PCB. The optimization conditions were in 50 mL medium, flexible PCB 10 g/L, particle size of flexible PCB 0.42~0.84 mm, culture medium initial pH 2.5, bacteria inoculation 5%, bacteria activation time 5 d, and quantity of FeSO4·7H2O 30 g/L. Under the optimization condition, the leaching rate of copper was 90.10%, which was 42.4% higher than the blank group. For the ICP-AES determination, it reached a conclusion that the best corresponding wavelength (nm) of copper will be 224.7 (nm). Weihua Gu, Jianfeng Bai, Jue Dai, Chenglong Zhang, Wenyi Yuan, Jingwei Wang, Pengcheng Wang, and Xin Zhao Copyright © 2014 Weihua Gu et al. All rights reserved. EIS Evaluation of Fe, Cr, and Ni in NaVO3 at 700°C Mon, 10 Nov 2014 08:54:32 +0000 Due to the depletion of high-grade fuels and for economic reasons, use of residual fuel oil in energy generation systems is a common practice. Residual fuel oil contains sodium, vanadium, and sulphur as impurities, as well as NaCl contamination. Metallic dissolution caused by molten vanadates has been classically considered the main corrosion process involved in the degradation of alloys exposed to the combustion products of heavy fuel oils. Iron and nickel base alloys are the commercial alloys commonly used for the high temperature applications, for example, manufacture of components used in aggressive environments of gas turbines, steam boilers, and so forth. Therefore, because the main constituents of these materials are Fe, Cr, and Ni, where Cr is the element responsible for providing the corrosion resistance, in this study the electrochemical performance of Fe, Cr, and Ni in NaVO3 at 700°C in static air for 100 hours was evaluated. O. Sotelo-Mazón, J. Porcayo-Calderon, C. Cuevas-Arteaga, J. J. Ramos-Hernandez, J. A. Ascencio-Gutierrez, and L. Martinez-Gomez Copyright © 2014 O. Sotelo-Mazón et al. All rights reserved. Physicochemical Analysis and Molecular Modeling of the Fosinopril β-Cyclodextrin Inclusion Complex Thu, 06 Nov 2014 13:01:10 +0000 This research investigates the interaction between fosinopril sodium (FOS) and beta-cyclodextrin (β-CD) in aqueous solution and in solid state, in order to prove the formation of an inclusion complex between the two components. The stoichiometry of the inclusion complex was found as 1 : 1 by employing continuous variation method in UV. The formation constant was calculated as 278.93 M−1 using Benesi-Hildebrand equation. The kneaded product (KP) and the physical mixture (PM) were further experimentally examined, using FTIR, powder X-ray diffractometry, and thermal analysis. The results confirm that the physicochemical properties of the FOS/β-CD KP are different from FOS and that the kneading method leads to formation of solid state inclusion complex between FOS and β-CD. Structural studies of the FOS/β-CD were carried out using molecular modeling techniques, in order to explain the complexation mechanism and the host-guest geometry. Lucreția Udrescu, Laura Sbârcea, Adriana Fuliaș, Ionuț Ledeți, Gabriela Vlase, Paul Barvinschi, and Ludovic Kurunczi Copyright © 2014 Lucreția Udrescu et al. All rights reserved. Optical and Thermal Properties of Zn/Al-Layered Double Hydroxide Nanocomposite Intercalated with Sodium Dodecyl Sulfate Tue, 28 Oct 2014 12:01:19 +0000 Zn/Al-LDH-SDS nanocomposites have been prepared using a coprecipitation method in different molar ratio of Zn2+/Al3+ = 2, 3, and 4 at pH = 10 and different concentrations of sodium dodecyl sulfate solution (0.2 M, 0.4 M, and 0.8 M). The XRD and FTIR data show the successful intercalation of SDS into the LDH interlayer. The XRD diffractogram showed that the basal spacing for is 0.89 nm compared to 2.54–2.61 nm for the Zn/Al-SDS nanocomposite. Optical band gap of the samples was calculated using Kubelka-Munk model. Due to the presence of LDH phase, two band gap energies ( and ) were observed. The values of and were found around 4.8 eV and 3.75 eV for Zn/Al-LDH (r = 2, 3, and 4). The values of band gap of LDH-SDS nanocomposites were found to increase to around 4.2 eV and 5.2 eV. For Zn4Al-LDH-SDS with 0.4 M and 0.8 M of SDS, only one energy gap at around 3.23 eV was observed. The optical band gap of phase increased as the amount of SDS increases. Thermal diffusivity of the resulted nanocomposite was also investigated. Samaneh Babakhani, Zainal Abidin Talib, Mohd Zobir Hussein, and Abdullah Ahmed Ali Ahmed Copyright © 2014 Samaneh Babakhani et al. All rights reserved. Weighted LabPQR Interim Connection Space Based on Human Color Vision for Spectral Color Reproduction Mon, 27 Oct 2014 06:02:41 +0000 A weighted LabPQR interim connection space, based on human color vision, is proposed for retaining more visual color information. A new weight function proposed in our paper is connected with color-matching function and then further weighted the PQR dimensions of LabPQR compared with the other two weight functions and nonweight function. The results indicated that weighting obviously improved the colorimetric representing accuracy and robustness compared with nonweighting, and the new weight function outperformed the other two weight functions. The weighted LabPQR of the new weight function is most suitable for spectral color reproduction. Guangyuan Wu, Zhen Liu, Shengwei Yang, Ming Zhu, and Pan Liu Copyright © 2014 Guangyuan Wu et al. All rights reserved. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer Mon, 20 Oct 2014 00:00:00 +0000 Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS) is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2) are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than . All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety. Xiaojun Tang, Yuntao Liang, Haozhe Dong, Yong Sun, and Haizhu Luo Copyright © 2014 Xiaojun Tang et al. All rights reserved. Preparation and Property of Mo-Doped Visible-Light Response Titaniumdioxide Photocatalyst Tue, 14 Oct 2014 12:45:19 +0000 Mo-titaniumdioxide (P25) photocatalyst with visible-light response was prepared with the ammonium molybdate for Mo source and titaniumdioxide for the raw materials by the method of dissolving and calcining. The photocatalysts’ structure was characterized by XRD, XPS, and UV-Vis absorption spectrum and TEM. The photocatalytic activities of Mo-titaniumdioxide were measured by the degradation of methylene blue (MB) under visible-light irradiation. The results showed that Mo characteristic peaks appeared at the point of 235.45 eV, 234.2 eV, 232.3 eV, and 231.1 eV. In Mo-titaniumdioxide crystal lattice, Mo6+ had the highest percentage (about 84.08%), indicating that Mo element was inserted into titaniumdioxide crystal lattice and considerable amount of Mo dopant was in the 6+ valence state, which restrained the recombination of electron-hole and had the visible-light photocatalytic activity. Photocatalytic degradation study indicated that the samples prepared at calcination temperature of 500°C were used to degrade MB; after 3 h, the degradation reached up to 80.67%. Yingying Li, Xianliang Song, Zhedong Wei, Jianguang Zhang, Lijuan Qin, and Shengying Ye Copyright © 2014 Yingying Li et al. All rights reserved. Quantitative Analysis of Dihydroxybenzenes in Complex Water Samples Using Excitation-Emission Matrix Fluorescence Spectroscopy and Second-Order Calibration Mon, 13 Oct 2014 12:15:30 +0000 The dihydroxybenzenes are organic intermediates in many fields for various purposes and have been widely recognized as fatal environmental pollutants. Simultaneous determination of these compounds is particularly important. These habitual methods are time-consuming and laborious. The combination of two-dimensional excitation-emission matrix (EEM) fluorescence and second-order calibration of parallel factor analysis (PARAFAC) was investigated for simultaneously determining catechol, hydroquinone, and tryptophan. A total of 25 samples were designed and are divided into a calibration set and a test set. An unexpected constituent was used as unknown interference. The EEM data were successfully decomposed into a four-factor model of PARAFAC. The resolved spectra excitation and emission profiles from PARAFAC algorithm were compared with the corresponding pure spectra to confirm the compounds in samples. Based on the decomposition, the final calibration models provided satisfactory concentration estimates. The mean recovery percentages were 98.3%, 101.7%, and 97.9% for catechol, hydroquinone, and tryptophan, respectively. The results reveal that the developed method is maybe a potential tool for simultaneous determination of phenolic components in water samples or other complex samples. Hui Chen, Zan Lin, Hongmei Tang, Tong Wu, and Chao Tan Copyright © 2014 Hui Chen et al. All rights reserved. Characterization of Polysaccharide by HPLC: Extraction and Anticancer Effects Wed, 03 Sep 2014 00:00:00 +0000 Cervical cancer is a serious health hazard for women’s reproductive system cancer; the method of treatment for cervical cancer is still in surgery, chemotherapy, and radiotherapy as the basic means, but with many complications. The effects of natural medicines for cervical cancer are increasingly becoming the focus of people’s attentions. By studying the polysaccharide of cervical cancer in mice, we found that shark cartilage polysaccharide can increase the serum levels of T-SOD and GSH and decrease MDA level significantly in the tumor mice. The distribution of the drug in the tissue was determined by HPLC method; the drug can be drawn in the liver and kidney the highest, followed by the spleen, lung, and brain levels being the lowest. Polysaccharide can inhibit tumor growth in the mice which may be connected with the enhanced immunity and the antioxidant capacity. Liming Gao, Ya Di, Jiandong Wu, Ming Shi, and Fulu Zheng Copyright © 2014 Liming Gao et al. All rights reserved. Preparation and Aromatic Hydrocarbon Removal Performance of Potassium Ferrate Tue, 02 Sep 2014 09:10:27 +0000 This experiment adopts the hypochlorite oxidation method to constantly synthesize potassium ferrate. Under the condition of micropolluted source water pH and on the basis of naphthalene, phenanthrene, and pyrene as research objects, the effects of different systems to remove aromatic hydrocarbons were studied. Various oxidation systems to remove phenanthrene intermediate are analyzed and the detailed mechanisms for removal of phenanthrene are discussed. The study found that the main intermediate of potassium ferrate system to transform phenanthrene is 9,10-phenanthraquinone and its area percentage reached 82.66%; that is, 9,10-phenanthraquinone is the key entity to remove phenanthrene. Wei Guan, Zhigang Xie, and Jia Zhang Copyright © 2014 Wei Guan et al. All rights reserved. Experimental Study of the Composition and Structure of Granular Media in the Shear Bands Based on the HHC-Granular Model Sun, 31 Aug 2014 06:32:58 +0000 The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength. Guang-jin Wang, Xiang-yun Kong, and Chun-he Yang Copyright © 2014 Guang-jin Wang et al. All rights reserved. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization Sun, 10 Aug 2014 11:32:49 +0000 Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms. Dandan Zhou, Xueying Zhang, Yilin Du, Shuangshi Dong, Zhengxue Xu, and Lei Yan Copyright © 2014 Dandan Zhou et al. All rights reserved. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths Sun, 10 Aug 2014 11:31:29 +0000 In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures. Yongmei Hu, Qingshan Li, Wei Hong, Tifeng Jiao, Guangzhong Xing, and Qilong Jiang Copyright © 2014 Yongmei Hu et al. All rights reserved. Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques Thu, 07 Aug 2014 06:53:43 +0000 Detection of explosives, explosive precursors, or other threat agents presents a number of technological challenges for optical sensing methods. Certainly detecting trace levels of threat agents against a complex background is chief among these challenges; however, the related issues of multiple target distances (from standoff to proximity) and sampling time scales (from passive mines to rapid rate of march convoy protection) for different applications make it unlikely that a single technique will be ideal for all sensing situations. A number of methods for spanning the range of optical sensor technologies exist which, when integrated, could produce a fused sensor system possessing a high level of sensitivity to threat agents and a moderate standoff real-time capability appropriate for portal screening of personnel or vehicles. In this work, we focus on several promising, and potentially synergistic, laser-based methods for sensing threat agents. For each method, we have briefly outlined the technique and report on the current level of capability. J. Bruce Johnson, Susan D. Allen, Jonathan Merten, Lewis Johnson, Daniel Pinkham, and Scott W. Reeve Copyright © 2014 J. Bruce Johnson et al. All rights reserved. Anthracene Fluorescence Quenching by a Tetrakis (Ketocarboxamide) Cavitand Wed, 06 Aug 2014 06:09:06 +0000 Quenching of both fluorescence lifetime and fluorescence intensity of anthracene was investigated in the presence of a newly derived tetrakis (ketocarboxamide) cavitand at various concentrations. Time-correlated single photon counting method was applied for the lifetime measurements. A clear correlation between the fluorescence lifetime of anthracene as a function of cavitand concentration in dimethylformamide solution was observed. The bimolecular collisional quenching constant was derived from the decrease of lifetime. Fluorescence intensity was measured in the emission wavelength region around 400 nm as a result of excitation at 280 nm. Effective quenching was observed in the presence of the cavitand. The obtained Stern-Volmer plot displayed upward curvature. The results did not follow even extended Stern-Volmer behavior, often used to describe deviations from static bimolecular quenching. To explain our results we adopted the Smoluchowski model and obtained a reasonable estimate for the molecular radius of the cavitand in solution. Tibor Zoltan Janosi, Jouko Korppi-Tommola, Zsolt Csok, Laszlo Kollar, Pasi Myllyperkio, and Janos Erostyak Copyright © 2014 Tibor Zoltan Janosi et al. All rights reserved. Use of Novel Polyurethane Microspheres in a Curcumin Delivery System Mon, 04 Aug 2014 08:29:07 +0000 Despite having a wide range of beneficial pharmacological effects, curcumin is characterized by poor water solubility and absorption. In this study, novel polyurethane microspheres containing curcumin (Cur-PUMs) were prepared using carboxymethyl cellulose sodium to improve the bioavailability and prolong the retention time of curcumin. The prepared Cur-PUMs were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, and ultraviolet spectrophotometer. The sustained-release effects of Cur-PUMs were demonstrated using stability tests in vitro and in vivo pharmacokinetic studies following oral administration. We found that the stability of Cur-PUMs was strongly affected by pH variation. Further, compared with free curcumin, Cur-PUMs showed significantly improved maximum concentration and half-life. Yongmei Hu, Qingshan Li, Wei Hong, Guangzhong Xing, Qilong Jiang, and Wenfeng Lv Copyright © 2014 Yongmei Hu et al. All rights reserved. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil Sun, 03 Aug 2014 07:57:38 +0000 Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L) and different temperatures (30°C, 40°C, and 50°C). Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency) value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (, ). Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons. Jialu Liu, Xijun Gong, Shijun Song, Fengjun Zhang, and Cong Lu Copyright © 2014 Jialu Liu et al. All rights reserved. Microstructural and Mössbauer Spectroscopy Studies of Nanoparticles Thu, 24 Jul 2014 09:13:27 +0000 Zinc substituted magnesium ferrite powders have been prepared by a sol-gel autocombustion method. XRD patterns show that the specimens with and 0.7 exhibit single-phase spinel structure, and more content of Zn in specimens is favorable for the synthesis of pure Mg-Zn ferrites. Room temperature Mössbauer spectra of annealed at 800°C display transition from ferrimagnetic behavior to super paramagnetic behavior with increase in zinc concentration. The Mössbauer spectras of Mg0.5Zn0.5Fe2O4 annealed at different temperatures display the magnetic phase change of the ferrite particles. Jinpei Lin, Yun He, Qing Lin, Ruijun Wang, and Henian Chen Copyright © 2014 Jinpei Lin et al. All rights reserved. Interaction of Hyperoside with Human Serum Albumin and Effect of Glucose on the Binding Wed, 23 Jul 2014 10:59:01 +0000 The interaction of hyperoside (Hyp) with human serum albumin (HSA) and effect of glucose on the binding were studied in simulating physiological condition (pH 7.40). The results suggested that Hyp quenched the endogenous fluorescence of HSA via a static quenching process with the distance of 1.95 nm between Hyp and HSA. Hydrophobic forces played a major role in stabilizing the Hyp-HSA complex. Through synchronous fluorescence monitoring of conformation of HSA, we found that the binding to Hyp can change the microenvironment around tryptophan (Trp) residues. Increasing in glucose concentration over a range from 0 to 9 mM decreased the binding ability of HSA to Hyp, implying that increasing in glucose concentration would increase the concentration of free Hyp. Jie Yang, Lingling Qu, Wenyue Yang, Yun Huang, Ning Jiao, Wenhong Zhan, Ding Zhao, and Lijian Cui Copyright © 2014 Jie Yang et al. All rights reserved. Efficient Discrimination of Some Moss Species by Fourier Transform Infrared Spectroscopy and Chemometrics Mon, 14 Jul 2014 13:35:06 +0000 Fourier transform infrared spectroscopy (FTIR) technique was used to classify 16 species from three moss families (Mielichhoferiaceae, Bryaceae, and Mniaceae). The FTIR spectra ranging from 4000 cm−1 to 400 cm−1 of the 16 species were obtained. To group the spectra according to their spectral similarity in a dendrogram, cluster analysis and principal component analysis (PCA) were performed. Cluster analysis combined with PCA was used to give a rough result of classification among the moss samples. However, some species belonging to the same genus exhibited very similar chemical components and similar FTIR spectra. Fourier self-deconvolution (FSD) was used to enhance the differences of the spectra. Discrete wavelet transform (DWT) was used to decompose the FTIR spectra of Mnium laevinerve and M. spinosum. Three scales were selected as the feature extracting space in the DWT domain. Results showed that FTIR spectroscopy combined with DWT was suitable for distinguishing different species of the same genus. Zhen Cao, Yongying Liu, and Jiancheng Zhao Copyright © 2014 Zhen Cao et al. All rights reserved. The Spectroscopic and Conductive Properties of Ru(II) Complexes with Potential Anticancer Properties Mon, 14 Jul 2014 11:21:23 +0000 Different density functional methods (DFT) have been used to optimize and study the chemistry of five potential anticancer complexes in terms of their electronic, conductive, and spectroscopic properties. Many of the computed properties in addition to the IR and QTAIM analysis of the NMR are dipole moment vector (), linear polarizability tensor (), first hyperpolarizability tensors (), polarizability exaltation index (), and chemical hardness () of the complexes. Stable low energy geometries are obtained using basis set with effective core potential (ECP) approximation but, in the computation of atomic or molecular properties, the metal Ru atom is better treated with higher all electron basis set like DGDZVP. The spectroscopic features like the IR of the metal-ligand bonds and the isotropic NMR shielding tensor of the coordinated atoms are significantly influenced by the chemical environment of the participating atoms. The carboxylic and pyrazole units are found to significantly enhance the polarizabilities and hyperpolarizabilities of the complexes while the chloride only improves the polarity of the complexes. Fermi contacts (FC) have the highest effect followed by the PSO among all the four Ramsey terms which defined the total spin-spin coupling constant J (HZ) of these complexes. Adebayo A. Adeniyi and Peter A. Ajibade Copyright © 2014 Adebayo A. Adeniyi and Peter A. Ajibade. All rights reserved. Influence of Zn/Fe Molar Ratio on Optical and Magnetic Properties of ZnO and ZnFe2O4 Nanocrystal as Calcined Products of Layered Double Hydroxides Thu, 10 Jul 2014 09:54:07 +0000 The coprecipitation method has been used to synthesize layered double hydroxide (Zn-Fe-LDH) nanostructure at different Zn2+/Fe3+ molar ratios. The structural properties of samples were studied using powder X-ray diffraction (PXRD). LDH samples were calcined at 600°C to produce mixed oxides (ZnO and ZnFe2O4). The crystallite size of mixed oxide was found in the nanometer scale (18.1 nm for ZnFe2O4 and 43.3 nm for ZnO). The photocatalytic activity of the calcination products was investigated using ultraviolet-visible-near infrared (UV-VIS-NIR) diffuse reflectance spectroscopy. The magnetic properties of calcined LDHs were investigated using a vibrating sample magnetometer (VSM). The calcined samples showed a paramagnetic behavior for all Zn2+/Fe3+ molar ratios. The effect of molar ratio on magnetic susceptibility of the calcined samples was also studied. Abdullah Ahmed Ali Ahmed, Zainal Abidin Talib, Mohd Zobir Hussein, Moayad Husein Flaifel, and Naif Mohammed Al-Hada Copyright © 2014 Abdullah Ahmed Ali Ahmed et al. All rights reserved. Sub-THz Characterisation of Monolayer Graphene Mon, 07 Jul 2014 07:50:19 +0000 We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase) are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range. Ehsan Dadrasnia, Sujitha Puthukodan, Vinod V. K. Thalakkatukalathil, Horacio Lamela, Guillaume Ducournau, Jean-Francois Lampin, Frédéric Garet, and Jean-Louis Coutaz Copyright © 2014 Ehsan Dadrasnia et al. All rights reserved. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene Thu, 03 Jul 2014 10:04:08 +0000 A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present. Guotao Zhao, Zhenxiao Zhao, Junliang Wu, and Daiqi Ye Copyright © 2014 Guotao Zhao et al. All rights reserved. Rapid Discrimination of Chlorpheniramine Maleate and Assessment of Its Surface Content Uniformity in a Pharmaceutical Formulation by NIR-CI Coupled with Statistical Measurement Thu, 26 Jun 2014 13:34:33 +0000 This study demonstrated that near infrared chemical imaging (NIR-CI) was a rapid and nondestructive technique for discrimination of chlorpheniramine maleate (CPM) and assessment of its surface content uniformity (SCU) in a pharmaceutical formulation. The characteristic wavenumber method was used for discriminating CPM distribution on the tablet surface. To assess the surface content uniformity of CPM, binary image and statistical measurement were proposed. Furthermore, high-performance liquid chromatography (HPLC) was used as reference method for accurately determining volume content of CPM in the sample. Moreover, HPLC was performed to assess volume content uniformity (VCU) of CPM in whole region and part region of the tablets. The NIR-CI result showed that the spatial distribution of CPM was heterogeneous on the tablet surface. Through the comparison of content uniformity of CPM determined by NIR-CI and HPLC, respectively, it demonstrated that a high degree of VCU did not imply a high degree of SCU of the samples. These results indicate that HPLC method is not suitable for testing SCU, and this has been verified by NIR-CI. This study proves the feasibility of NIR-CI for rapid discrimination of CPM and assessment of its SCU, which is helpful for the quality control of commercial CPM tablets. Luwei Zhou, Zhisheng Wu, Xinyuan Shi, Manfei Xu, Xiaona Liu, Bing Xu, and Yanjiang Qiao Copyright © 2014 Luwei Zhou et al. All rights reserved. Study on the Gelation of Foamed Gel for Preventing the Spontaneous Combustion of Coal Thu, 26 Jun 2014 06:38:27 +0000 According to the existing deficiencies in fire prevention technology, a new technique named foamed gel is developed to prevent coal mine fire efficiently. Foamed gel, formed by adding the type F3 foam agent, polymer H, and AL into water, introducing nitrogen and stirring physically and mechanically, is a complex multicomponent foam system. The effects of the mass fraction and mixed ratios of polymer H and polymer AL blends on gelation were comprehensively studied. The results show that the optimum performance can be got when the mass fraction of blends was 0.6% and the mixed ratio was 5 : 5. In addition, the interaction between molecules of these polymer blends was also investigated with the help of atomic force microscope. It can be found that the polymers H and AL, through having crosslinking reaction with each other, formed three-dimensional network structures, which can not only increase the nodes of the foamed gel system but also enhance the structures. Leilin Zhang and Botao Qin Copyright © 2014 Leilin Zhang and Botao Qin. All rights reserved. Quasielastic Light Scattering and Structure of Nanodroplets Mixed with Polycaprolactone Mon, 23 Jun 2014 11:16:57 +0000 The interaction of polycaprolactone (PCL) with droplets of a microemulsion is studied with quasielastic light scattering and small angle X-ray scattering At constant droplet size we vary the PCL concentration and there is clear evidence for an increasing attractive interaction of the droplets from structural investigations with small-angle X-ray scattering (SAXS). The collective diffusion coefficient () of the droplets is monitored with quasielastic light scattering (QELS). We mainly focus on the variation of the dynamic behavior as a function of the PCL concentration and length scale (M.W. = 5000 and 10000) in microemulsion. With increasing PCL concentration and length scale the dynamics of the system slow down. A hard sphere model with depletion potential can fit well the SAXS experiment of microemulsion mixed with PCL. The results show with increase of PCL on microemulsion the size of droplets is constant at 83Å but the size ratio of polymer to droplets is changing. Soheil Sharifi Copyright © 2014 Soheil Sharifi. All rights reserved. Analysis of the Oil Content of Rapeseed Using Artificial Neural Networks Based on Near Infrared Spectral Data Mon, 23 Jun 2014 00:00:00 +0000 The oil content of rapeseed is a crucial property in practical applications. In this paper, instead of traditional analytical approaches, an artificial neural network (ANN) method was used to analyze the oil content of 29 rapeseed samples based on near infrared spectral data with different wavelengths. Results show that multilayer feed-forward neural networks with 8 nodes (MLFN-8) are the most suitable and reasonable mathematical model to use, with an RMS error of 0.59. This study indicates that using a nonlinear method is a quick and easy approach to analyze the rapeseed oil’s content based on near infrared spectral data. Dazuo Yang, Hao Li, Chenchen Cao, Fudi Chen, Yibing Zhou, and Zhilong Xiu Copyright © 2014 Dazuo Yang et al. All rights reserved. Infrared Spectroscopic Study on the Modified Mechanism of Aluminum-Impregnated Bone Charcoal Sun, 22 Jun 2014 12:28:50 +0000 Fluoride contamination in drinking water is a prominent and widespread problem in many parts of the world. Excessive ingestion of fluoride through water can lead to the high risk of fluorosis in human body. Bone charcoal, with the principal active component of hydroxyapatite, is a frequently used adsorbent for fluoride removal. Many laboratory experiments suggest that the aluminum-impregnated bone charcoal is an effective adsorbent in defluoridation. However, the mechanisms underlying this modification process are still not well understood, which in turn greatly impedes the further studies on other different modified adsorbents. To address this issue, we used the infrared spectroscopy to examine the bone charcoal and the aluminum-impregnated bone charcoal, respectively. The comparative results show that the −OH peak of infrared spectroscopy has been intensified after modification. This significant change helped speculate the modified mechanism of the aluminum-impregnated bone charcoal. In addition, it is found that the hydroxide ion dissociates from hydroxyapatite in the modification process. Such finding implies that the tetrahydroxoaluminate can be combined with the hydroxyapatite and the aluminum ion can be impregnated onto the bone char surface. Hao Li, Yufan Yang, Shuangjun Yang, Anpu Chen, and Dazuo Yang Copyright © 2014 Hao Li et al. All rights reserved.