About this Journal Submit a Manuscript Table of Contents
Journal of Signal Transduction
Volume 2010 (2010), Article ID 268589, 10 pages
http://dx.doi.org/10.1155/2010/268589
Review Article

GIMAP Proteins in T-Lymphocytes

1Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 B, P.O. BOX 123, 20520 Turku, Finland
2Department of Pharmacology, Drug Development and Therapeutics, Drug Discovery Graduate School, University of Turku, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland

Received 28 January 2010; Accepted 16 June 2010

Academic Editor: Karl Matter

Copyright © 2010 Sanna Filén and Riitta Lahesmaa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. C. Poirier, G. Anderson, and G. Anderson, “Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants,” Journal of Immunology, vol. 163, no. 9, pp. 4960–4969, 1999.
  2. T. Nitta and Y. Takahama, “The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins,” Trends in Immunology, vol. 28, no. 2, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at PubMed
  3. J. Krücken, R. M. U. Schroetel, and R. M. U. Schroetel, “Comparative analysis of the human gimap gene cluster encoding a novel GTPase family,” Gene, vol. 341, no. 1-2, pp. 291–304, 2004. View at Publisher · View at Google Scholar · View at PubMed
  4. C. Liu, T. Wang, W. Zhang, and X. Li, “Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana,” Journal of Plant Physiology, vol. 165, no. 7, pp. 777–787, 2008. View at Publisher · View at Google Scholar · View at PubMed
  5. H. M. Wain, E. A. Bruford, R. C. Lovering, M. J. Lush, M. W. Wright, and S. Povey, “Guidelines for human gene nomenclature,” Genomics, vol. 79, no. 4, pp. 464–470, 2002. View at Publisher · View at Google Scholar · View at PubMed
  6. O. Stamm, J. Krücken, H.-P. Schmitt-Wrede, W. P. M. Benten, and F. Wunderlich, “Human ortholog to mouse gene imap38 encoding an ER-localizable G-protein belongs to a gene family clustered on chromosome 7q32-36,” Gene, vol. 282, no. 1-2, pp. 159–167, 2002. View at Publisher · View at Google Scholar
  7. J. Krücken, H.-P. Schmitt-Wrede, U. Markmann-Mulisch, and F. Wunderlich, “Novel gene expressed in spleen cells mediating acquired testosterone-resistant immunity to Plasmodium chabaudi malaria,” Biochemical and Biophysical Research Communications, vol. 230, no. 1, pp. 167–170, 1997. View at Publisher · View at Google Scholar · View at PubMed
  8. J. Krücken, O. Stamm, H.-P. Schmitt-Wrede, A. Mincheva, P. Lichter, and F. Wunderlich, “Spleen-specific expression of the malaria-inducible intronless mouse gene imap38,” Journal of Biological Chemistry, vol. 274, no. 34, pp. 24383–24391, 1999. View at Publisher · View at Google Scholar
  9. A. Saunders, T. Lamb, and T. Lamb, “Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria,” Malaria Journal, vol. 8, no. 1, article 53, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. K. Kannan, N. Kaminski, G. Rechavi, J. Jakob-Hirsch, N. Amariglio, and D. Givol, “DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1,” Oncogene, vol. 20, no. 26, pp. 3449–3455, 2001. View at Publisher · View at Google Scholar · View at PubMed
  11. L. Dahéron, T. Zenz, L. D. Siracusa, C. Brenner, and B. Calabretta, “Molecular cloning of Ian4: a BCR/ABL-induced gene that encodes an outer membrane mitochondrial protein with GTP-binding activity,” Nucleic Acids Research, vol. 29, no. 6, pp. 1308–1316, 2001.
  12. T. Nitta, M. Nasreen, and M. Nasreen, “IAN family critically regulates survival and development of T lymphocytes,” PLoS Biology, vol. 4, no. 4, article e103, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. C. Dion, C. Carter, and C. Carter, “Expression of the Ian family of putative GTPases during T cell development and description of an Ian with three sets of GTP/GDP-binding motifs,” International Immunology, vol. 17, no. 9, pp. 1257–1268, 2005. View at Publisher · View at Google Scholar · View at PubMed
  14. S. Schnell, C. Démollière, P. van den Berk, and H. Jacobs, “Gimap4 accelerates T-cell death,” Blood, vol. 108, no. 2, pp. 591–599, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. M. Cambot, S. Aresta, B. Kahn-Perlès, J. de Gunzburg, and P.-H. Roméo, “Human immune associated nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells,” Blood, vol. 99, no. 9, pp. 3293–3301, 2002. View at Publisher · View at Google Scholar
  16. C. Carter, C. Dion, and C. Dion, “A natural hypomorphic variant of the apoptosis regulator Gimap4/IAN1,” Journal of Immunology, vol. 179, no. 3, pp. 1784–1795, 2007.
  17. T. Sandal, L. Aumo, L. Hedin, B. T. Gjertsen, and S. O. Døskeland, “Irod/Ian5: an inhibitor of γ-radiation- and okadaic acid-induced apoptosis,” Molecular Biology of the Cell, vol. 14, no. 8, pp. 3292–3304, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. T. Zenz, A. Roessner, A. Thomas, S. Fröhling, H. Döhner, B. Calabretta, and L. Dahéron, “hlan5: the human ortholog to the rat lan4/lddm1/lyp is a new member of the Ian family that is overexpressed in B-cell lymphoid malignancies,” Genes and Immunity, vol. 5, no. 2, pp. 109–116, 2004. View at Publisher · View at Google Scholar · View at PubMed
  19. U. Dalberg, H. Markholst, and L. Hornum, “Both Gimap5 and the diabetogenic BBDP allele of Gimap5 induce apoptosis in T cells,” International Immunology, vol. 19, no. 4, pp. 447–453, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. A. J. MacMurray, D. H. Moralejo, and D. H. Moralejo, “Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene,” Genome Research, vol. 12, no. 7, pp. 1029–1039, 2002. View at Publisher · View at Google Scholar · View at PubMed
  21. L. Hornum, J. Rmer, and H. Markholst, “The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1,” Diabetes, vol. 51, no. 6, pp. 1972–1979, 2002.
  22. M. Michalkiewicz, T. Michalkiewicz, and T. Michalkiewicz, “Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat,” Physiological Genomics, vol. 19, pp. 228–232, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. E. A. Rutledge, J. M. Fuller, and J. M. Fuller, “Sequence variation and expression of the Gimap gene family in the BB rat,” Experimental Diabetes Research, vol. 2009, Article ID 835650, 10 pages, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. M. Pandarpurkar, L. Wilson-Fritch, and L. Wilson-Fritch, “Ian4 is required for mitochondrial integrity and T cell survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10382–10387, 2003. View at Publisher · View at Google Scholar · View at PubMed
  25. J. Krücken, M. Epe, W. P. M. Benten, N. Falkenroth, and F. Wunderlich, “Malaria-suppressible expression of the anti-apoptotic triple GTPase mGIMAP8,” Journal of Cellular Biochemistry, vol. 96, no. 2, pp. 339–348, 2005. View at Publisher · View at Google Scholar · View at PubMed
  26. J. S. Scheele, R. E. Marks, and G. R. Boss, “Signaling by small GTPases in the immune system,” Immunological Reviews, vol. 218, no. 1, pp. 92–101, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. E. Genot and D. A. Cantrell, “Ras regulation and function in lymphocytes,” Current Opinion in Immunology, vol. 12, no. 3, pp. 289–294, 2000. View at Publisher · View at Google Scholar
  28. K. Rajalingam, R. Schreck, U. R. Rapp, and Š. Albert, “Ras oncogenes and their downstream targets,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1177–1195, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. J. Colicelli, “Human RAS superfamily proteins and related GTPases,” Science's STKE, vol. 2004, no. 250, p. RE13, 2004.
  30. S. J. McLeod and M. R. Gold, “Activation and function of the Rap1 GTPase in B lymphocytes,” International Reviews of Immunology, vol. 20, no. 6, pp. 763–789, 2001.
  31. Y. Zheng, Y. Zha, and T. F. Gajewski, “Molecular regulation of T-cell anergy,” EMBO Reports, vol. 9, no. 1, pp. 50–55, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. R. H. Schwartz, “T cell anergy,” Annual Review of Immunology, vol. 21, pp. 305–334, 2003. View at Publisher · View at Google Scholar · View at PubMed
  33. G. V. Shurin, I. L. Tourkova, G. S. Chatta, G. Schmidt, S. Wei, J. Y. Djeu, and M. R. Shurin, “Small Rho GTPases regulate antigen presentation in dendritic cells,” Journal of Immunology, vol. 174, no. 6, pp. 3394–3400, 2005.
  34. T. Finkel, “Intracellular redox regulation by the family of small GTPases,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1857–1863, 2006. View at Publisher · View at Google Scholar · View at PubMed
  35. T. L. Reuber and F. M. Ausubel, “Isolation of arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes,” Plant Cell, vol. 8, no. 2, pp. 241–249, 1996.
  36. J.-J. Filén, S. FiLén, and S. FiLén, “Quantitative proteomics reveals GIMAP family proteins 1 and 4 to be differentially regulated during human T helper cell differentiation,” Molecular and Cellular Proteomics, vol. 8, no. 1, pp. 32–44, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. R. Sugiura, S. O. Sio, H. Shuntoh, and T. Kuno, “Molecular genetic analysis of the calcineurin signaling pathways,” Cellular and Molecular Life Sciences, vol. 58, no. 2, pp. 278–288, 2001.
  38. R. D. Schulteis, H. Chu, and H. Chu, “Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5,” Blood, vol. 112, no. 13, pp. 4905–4914, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. K. A. Duthie, L. C. Osborne, L. J. Foster, and N. Abraham, “Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Rα449F knock-in T cell progenitors,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1700–1710, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. R. S. Hotchkiss, A. Strasser, J. E. McDunn, and P. E. Swanson, “Mechanisms of disease: cell death,” The New England Journal of Medicine, vol. 361, no. 16, pp. 1570–1583, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. F. Wunderlich, W. Peter, M. Benten, U. Bettenhaeuser, H.-P. Schmitt-Wrede, and H. Mossmann, “Testosterone-unresponsiveness of existing immunity against Plasmodium chabaudi malaria,” Parasite Immunology, vol. 14, no. 3, pp. 307–320, 1992.
  42. A. Saunders, L. M.C. Webb, and L. M.C. Webb, “Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes,” Blood, vol. 115, no. 16, pp. 3249–3257, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Ramanathan and P. Poussier, “BB rat lyp mutation and type 1 diabetes,” Immunological Reviews, vol. 184, pp. 161–171, 2001. View at Publisher · View at Google Scholar
  44. H. Groen, J. M. M. M. van der Berk, P. Nieuwenhuis, and J. Kampinga, “Peripheral T cells in diabetes prone (DP) BB rats are CD45R-negative,” Thymus, vol. 14, no. 1–3, pp. 145–150, 1989.
  45. G. Häcker, A. Bauer, and A. Villunger, “Apoptosis in activated T cells: what are the triggers, and what the signal transducers?” Cell Cycle, vol. 5, no. 21, pp. 2421–2424, 2006.
  46. M. Keita, C. Leblanc, D. Andrews, and S. Ramanathan, “GIMAP5 regulates mitochondrial integrity from a distinct subcellular compartment,” Biochemical and Biophysical Research Communications, vol. 361, no. 2, pp. 481–486, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. N. Chadwick, L. Zeef, V. Portillo, C. Fennessy, F. Warrander, S. Hoyle, and A.-M. Buckle, “Identification of novel Notch target genes in T cell leukaemia,” Molecular Cancer, vol. 8, article 35, 2009. View at Publisher · View at Google Scholar · View at PubMed
  48. D. Zipris, D. L. Greiner, S. Malkani, B. Whalen, J. P. Mordes, and A. A. Rossini, “Cytokine gene expression in islets and thyroids of BB rats: IFN-γ and IL-12p40 mRNA increase with age in both diabetic and insulin-treated nondiabetic BB rats,” Journal of Immunology, vol. 156, no. 3, pp. 1315–1321, 1996.
  49. A. Rabinovitch, W. Suarez-Pinzon, A. El-Sheikh, O. Sorensen, and R. F. Power, “Cytokine gene expression in pancreatic islet-infiltrating leukocytes of BB rats: expression of Th1 cytokines correlates with β-cell destructive insulitis and IDDM,” Diabetes, vol. 45, no. 6, pp. 749–754, 1996.
  50. P. Poussier, A. F. Nakhooda, J. A. Falk, C. Lee, and E. B. Marliss, “Lymphopenia and abnormal lymphocyte subsets in the “BB” rat: relationship to the diabetic syndrome,” Endocrinology, vol. 110, no. 5, pp. 1825–1827, 1982.
  51. S. Ramanathan, K. Norwich, and P. Poussier, “Antigen activation rescues recent thymic emigrants from programmed cell death in the BB rat,” Journal of Immunology, vol. 160, no. 12, pp. 5757–5764, 1998.
  52. G. Hernández-Hoyos, S. Joseph, N. G. A. Miller, and G. W. Butcher, “The lymphopenia mutation of the BB rat causes inappropriate apoptosis of mature thymocytes,” European Journal of Immunology, vol. 29, no. 6, pp. 1832–1841, 1999. View at Publisher · View at Google Scholar
  53. B. J. Whalen, P. Weiser, J. Marounek, A. A. Rossini, J. P. Mordes, and D. L. Greiner, “Recapitulation of normal and abnormal biobreeding rat T cell development in adult thymus organ culture,” Journal of Immunology, vol. 162, no. 7, pp. 4003–4012, 1999.
  54. S. C. Pino, B. O'Sullivan-Murphy, and B. O'Sullivan-Murphy, “CHOP mediates endoplasmic reticulum stress-induced apoptosis in Gimap5-deficient T cells,” PLoS ONE, vol. 4, no. 5, article e5468, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Ilangumaran, M. Forand-Boulerice, and M. Forand-Boulerice, “Loss of GIMAP5 (GTPase of immunity-associated nucleotide binding protein 5) impairs calcium signaling in rat T lymphocytes,” Molecular Immunology, vol. 46, no. 6, pp. 1256–1259, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. L. Cousins, M. Graham, and M. Graham, “Eosinophilic bowel disease controlled by the BB rat-derived lymphopenia/Gimap5 gene,” Gastroenterology, vol. 131, no. 5, pp. 1475–1485, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. M. J. Barnes, H. Aksoylar, and H. Aksoylar, “Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice,” Journal of Immunology, vol. 184, no. 7, pp. 3743–3754, 2010. View at Publisher · View at Google Scholar · View at PubMed
  58. A. Hellquist, M. Zucchelli, and M. Zucchelli, “The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus,” Journal of Medical Genetics, vol. 44, no. 5, pp. 314–321, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. J.-H. Shin, M. Janer, and M. Janer, “IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5,” Genes and Immunity, vol. 8, no. 6, pp. 503–512, 2007. View at Publisher · View at Google Scholar · View at PubMed