About this Journal Submit a Manuscript Table of Contents
Journal of Signal Transduction
Volume 2010 (2010), Article ID 375345, 8 pages
http://dx.doi.org/10.1155/2010/375345
Review Article

Posttranslational Processing and Modification of Cathepsins and Cystatins

Institute for Health Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro-cho, Tokushima City, Tokushima 770-8514, Japan

Received 24 May 2010; Accepted 9 August 2010

Academic Editor: Hsiang-fu Kung

Copyright © 2010 Nobuhiko Katunuma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hara, E. Kominami, and N. Katunuma, “Effect of proteinase inhibitors on intracellular processing of cathepsin B, H and L in rat macrophages,” FEBS Letters, vol. 231, no. 1, pp. 229–231, 1988.
  2. K. Ii, K. Hizawa, and E. Kominami, “Different immunolocalizations of cathepsins B, H, and L in the liver,” Journal of Histochemistry and Cytochemistry, vol. 33, no. 11, pp. 1173–1175, 1985.
  3. E. Kominami, T. Tsukahara, Y. Bando, and N. Katanuma, “Distribution of cathepsins B and H in rat tissues and peripheral blood cells,” Journal of Biochemistry, vol. 98, no. 1, pp. 87–93, 1985.
  4. E. Kominami and N. Katunuma, “Immunological studies on cathepsins B and H from rat liver,” Journal of Biochemistry, vol. 91, no. 1, pp. 67–71, 1982.
  5. E. Kominami, T. Tsukahara, K. Hara, and N. Katunuma, “Biosyntheses and processing of lysosomal cysteine proteinases in rat macrophages,” FEBS Letters, vol. 231, no. 1, pp. 225–228, 1988.
  6. S. J. Chan, S. B. Segundo, M. B. McCormick, and D. F. Steiner, “Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, pp. 7721–7725, 1986.
  7. N. Katunuma and E. Kominami, “Structures and functions of lysosomal thiol proteinases and their endogenous inhibitor,” Current Topics in Cellular Regulation, vol. 22, pp. 71–101, 1983.
  8. K. Ishidoh, S. Imajoh, Y. Emori et al., “Molecular cloning and sequencing of cDNA for rat cathepsin H Homology in pro-peptide regions of cysteine proteinases,” FEBS Letters, vol. 226, no. 1, pp. 33–37, 1987.
  9. K. Ishidoh, E. Kominami, K. Suzuki, and N. Katunuma, “Gene structure and 5'-upstream sequence of rat cathepsin L,” FEBS Letters, vol. 259, no. 1, pp. 71–74, 1989. View at Publisher · View at Google Scholar
  10. T. Towatari and N. Katunuma, “Amino acid sequence of rat liver cathepsin L,” FEBS Letters, vol. 236, no. 1, pp. 57–61, 1988. View at Publisher · View at Google Scholar
  11. K. Takio, T. Towatari, N. Katunuma, and K. Titani, “Primary structure study of rat liver cathepsin B: a striking resemblance to papain,” Biochemical and Biophysical Research Communications, vol. 97, no. 1, pp. 340–346, 1980.
  12. T. Towatari and N. Katunuma, “Crystallization and amino acid composition of cathepsin B from rat liver lysosomes,” Biochemical and Biophysical Research Communications, vol. 83, no. 2, pp. 513–520, 1978.
  13. T. Towatari, Y. Kawabata, and N. Katunuma, “Crystallization and properties of cathepsin B from rat liver,” European Journal of Biochemistry, vol. 102, no. 1, pp. 279–289, 1979.
  14. T. Taniguchi, T. Mizuochi, and T. Towatari, “Structural studies on the carbohydrate moieties of rat liver cathepsins B and H,” Journal of Biochemistry, vol. 97, no. 3, pp. 973–976, 1985.
  15. K. Ishidoh, E. Kominami, N. Katunuma, and K. Suzuki, “Gene structure of rat cathepsin H,” FEBS Letters, vol. 253, no. 1-2, pp. 103–107, 1989. View at Publisher · View at Google Scholar
  16. E. Kominami, Y. Bando, N. Wakamatsu, and N. Katunuma, “Different tissue distributions of two types of thiol proteinase inhibitors from rat liver and epidermis,” Journal of Biochemistry, vol. 96, no. 5, pp. 1437–1442, 1984.
  17. H. Kido, K. Izumi, and H. Otsuka, “A chymotrypsin-type serine protease in rat basophilic leukemia cells: evidence for its immunologic identity with atypical mast cell protease,” Journal of Immunology, vol. 136, no. 3, pp. 1061–1065, 1986.
  18. T. Towatari and N. Katunuma, “Selective cleavage of peptide bonds by cathepsins L and B from rat liver,” Journal of Biochemistry, vol. 93, no. 4, pp. 1119–1128, 1983.
  19. N. Katunuma and E. Kominami, “Molecular basis of intracellular regulation of thiol proteinase inhibitors,” Current Topics in Cellular Regulation, vol. 27, pp. 345–360, 1985.
  20. K. Takio, E. Kominami, Y. Bando, N. Katunuma, and K. Titani, “Amino acid sequence of rat epidermal thiol proteinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 121, no. 1, pp. 149–154, 1984.
  21. K. Takio, E. Kominami, N. Wakamatsu, N. Katunuma, and K. Titani, “Amino acid sequence of rat liver thiol proteinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 115, no. 3, pp. 902–908, 1983.
  22. N. Wakamatsu, E. Kominami, and N. Katunuma, “Comparison of properties of thiol proteinase inhibitors from rat serum and liver,” Journal of Biological Chemistry, vol. 257, no. 24, pp. 14653–14656, 1982.
  23. M. Takahashi, T. Tezuka, T. Towatari, and N. Katunuma, “Identification of hematoxylin-stainable protein in epidermal keratohyalin granules as phosphorylated cystatin α by protein kinase C,” FEBS Letters, vol. 287, no. 1-2, pp. 178–180, 1991. View at Publisher · View at Google Scholar
  24. M. Takahashi, T. Tezuka, T. Towatari, and N. Katunuma, “Properties and nature of a cysteine proteinase inhibitor located in keratohyalin granules of rat epidermis,” FEBS Letters, vol. 267, no. 2, pp. 261–264, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Ike, M. Yamato, E. Kominami, and N. Katunuma, “Total synthesis of cystatin-α gene and its expression in E. Coli,” in Intracellular Proteolysis: Mechanisms and Regulations, N. Katunuma and E. Kominami, Eds., pp. 391–393, Japan Scientific Societies Press, Tokyo, Japan, 1989.
  26. N. Katunuma and E. Kominami, “Regulation of inhibitory activity of cysteine proteinase inhibitor (cystatin β) by glutathione mediated covalent modification, glutathione centennial,” in Molecular Perspectives and Clinical Implications, pp. 89–100, Academic Press, New York, NY, USA, 1989.
  27. N. Wakamatsu, E. Kominami, K. Takio, and N. Katunuma, “Three forms of thiol proteinase inhibitor from rat liver formed depending on the oxidation-reduction state of a sulfhydryl group,” Journal of Biological Chemistry, vol. 259, no. 22, pp. 13832–13838, 1984.