About this Journal Submit a Manuscript Table of Contents
Journal of Signal Transduction
Volume 2011 (2011), Article ID 894510, 8 pages
http://dx.doi.org/10.1155/2011/894510
Review Article

Drosophila SOCS Proteins

MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield S10 2TN, UK

Received 15 July 2011; Accepted 15 September 2011

Academic Editor: Karl Matter

Copyright © 2011 Wojciech J. Stec and Martin P. Zeidler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Croker, H. Kiu, and S. E. Nicholson, “SOCS regulation of the JAK/STAT signalling pathway,” Seminars in Cell and Developmental Biology, vol. 19, no. 4, pp. 414–422, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. Chenna, H. Sugawara, T. Koike et al., “Multiple sequence alignment with the Clustal series of programs,” Nucleic Acids Research, vol. 31, no. 13, pp. 3497–3500, 2003. View at Publisher · View at Google Scholar
  3. D. A. Harrison, P. E. McCoon, R. Binari, M. Gilman, and N. Perrimon, “Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway,” Genes and Development, vol. 12, no. 20, pp. 3252–3263, 1998.
  4. J. C. G. Hombría, S. Brown, S. Häder, and M. P. Zeidler, “Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand,” Developmental Biology, vol. 288, no. 2, pp. 420–433, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. V. M. Wright, K. L. Vogt, E. Smythe, and M. P. Zeidler, “Differential activities of the Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3,” Cellular Signalling, vol. 23, no. 5, pp. 920–927, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. S. Brown, N. Hu, and J. C. G. Hombría, “Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless,” Current Biology, vol. 11, no. 21, pp. 1700–1705, 2001. View at Publisher · View at Google Scholar
  7. R. Binari and N. Perrimon, “Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila,” Genes and Development, vol. 8, no. 3, pp. 300–312, 1994.
  8. X. S. Hou, M. B. Melnick, and N. Perrimon, “Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs,” Cell, vol. 84, no. 3, pp. 411–419, 1996. View at Publisher · View at Google Scholar
  9. R. Yan, S. Small, C. Desplan, C. R. Dearolf, and J. E. Darnell, “Identification of a Stat gene that functions in Drosophila development,” Cell, vol. 84, no. 3, pp. 421–430, 1996. View at Publisher · View at Google Scholar
  10. P. Karsten, I. Plischke, N. Perrimon, and M. P. Zeidler, “Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E,” Cellular Signalling, vol. 18, no. 6, pp. 819–829, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. M. S. Flaherty, J. Zavadil, L. A. Ekas, and E. A. Bach, “Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway,” Developmental Dynamics, vol. 238, no. 9, pp. 2235–2253, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. S. Bina, V. M. Wright, K. H. Fisher, M. Milo, and M. P. Zeidler, “Transcriptional targets of Drosophila JAK/STAT pathway signalling as effectors of haematopoietic tumour formation,” EMBO Reports, vol. 11, no. 3, pp. 201–207, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. N. I. Arbouzova and M. P. Zeidler, “JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions,” Development, vol. 133, no. 14, pp. 2605–2616, 2006. View at Publisher · View at Google Scholar · View at PubMed
  14. S. Small, A. Blair, and M. Levine, “Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo,” Developmental Biology, vol. 175, no. 2, pp. 314–324, 1996. View at Publisher · View at Google Scholar · View at PubMed
  15. R. Yan, H. Luo, J. E. Darnell, and C. R. Dearolf, “A JAK-STAT pathway regulates wing vein formation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5842–5847, 1996. View at Publisher · View at Google Scholar
  16. C. Ghiglione, O. Devergne, E. Georgenthum et al., “The Drosophila cytokine receptor Domeless controls border cell migration and epithelial polarization during oogenesis,” Development, vol. 129, no. 23, pp. 5437–5447, 2002. View at Publisher · View at Google Scholar
  17. D. L. Silver and D. J. Montell, “Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila,” Cell, vol. 107, no. 7, pp. 831–841, 2001. View at Publisher · View at Google Scholar
  18. A. A. Kiger, D. L. Jones, C. Schulz, M. B. Rogers, and M. T. Fuller, “Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue,” Science, vol. 294, no. 5551, pp. 2542–2545, 2001. View at Publisher · View at Google Scholar · View at PubMed
  19. N. Tulina and E. Matunis, “Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling,” Science, vol. 294, no. 5551, pp. 2546–2549, 2001. View at Publisher · View at Google Scholar · View at PubMed
  20. W. Liu, S. R. Singh, and S. X. Hou, “JAK-STAT is restrained by Notch to control cell proliferation of the drosophila intestinal stem cells,” Journal of Cellular Biochemistry, vol. 109, no. 5, pp. 992–999, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. W. Wang, Y. Li, L. Zhou, H. Yue, and H. Luo, “Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe,” Biochemical and Biophysical Research Communications, vol. 410, no. 4, pp. 714–720, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. E. A. Bach, S. Vincent, M. P. Zeidler, and N. Perrimon, “A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway,” Genetics, vol. 165, no. 3, pp. 1149–1166, 2003.
  23. H. Agaisse and N. Perrimon, “The roles of JAK/STAT signaling in Drosophila immune responses,” Immunological Reviews, vol. 198, pp. 72–82, 2004. View at Publisher · View at Google Scholar
  24. E. J. Kwon, H. S. Park, Y. S. Kim et al., “Transcriptional regulation of the Drosophila raf proto-oncogene by drosophila STAT during development and in immune response,” Journal of Biological Chemistry, vol. 275, no. 26, pp. 19824–19830, 2000. View at Publisher · View at Google Scholar · View at PubMed
  25. G. H. Baeg, R. Zhou, and N. Perrimon, “Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila,” Genes and Development, vol. 19, no. 16, pp. 1861–1870, 2005. View at Publisher · View at Google Scholar · View at PubMed
  26. P. Müller, D. Kuttenkeuler, V. Gesellchen, M. P. Zeidler, and M. Boutros, “Identification of JAK/STAT signalling components by genome-wide RNA interference,” Nature, vol. 436, no. 7052, pp. 871–875, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. A. Betz, N. Lampen, S. Martinek, M. W. Young, and J. E. Darnell, “A Drosophila PIAS homologue negatively regulates stat92E,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9563–9568, 2001. View at Publisher · View at Google Scholar · View at PubMed
  28. K. L. Hari, K. R. Cook, and G. H. Karpen, “The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family,” Genes and Development, vol. 15, no. 11, pp. 1334–1348, 2001. View at Publisher · View at Google Scholar · View at PubMed
  29. S. Mesilaty-Gross, A. Reich, B. Motro, and R. Wides, “The Drosophila STAM gene homolog is in a tight gene cluster, and its expression correlates to that of the adjacent gene ial,” Gene, vol. 231, no. 1-2, pp. 173–186, 1999. View at Publisher · View at Google Scholar
  30. B. A. Callus and B. Mathey-Prevot, “SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc,” Oncogene, vol. 21, no. 31, pp. 4812–4821, 2002. View at Publisher · View at Google Scholar · View at PubMed
  31. P. Karsten, S. Häder, and M. P. Zeidler, “Cloning and expression of Drosophila SOCS36E and its potential regulation by the JAK/STAT pathway,” Mechanisms of Development, vol. 117, no. 1-2, pp. 343–346, 2002. View at Publisher · View at Google Scholar
  32. J. S. Rawlings, G. Rennebeck, S. M. W. Harrison, R. Xi, and D. A. Harrison, “Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities,” BMC Cell Biology, vol. 5, no. 1, p. 38, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. G. C. Elliott and M. P. Zeidler, “MsSOCS expression indicates a potential role for JAK/STAT signalling in the early stages of Manduca sexta spermatogenesis,” Insect Molecular Biology, vol. 17, no. 5, pp. 475–483, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. D. Bäumer, J. Trauner, D. Hollfelder, A. Cerny, and M. Schoppmeier, “JAK-STAT signalling is required throughout telotrophic oogenesis and short-germ embryogenesis of the beetle Tribolium,” Developmental Biology, vol. 350, no. 1, pp. 169–182, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. R. Starr, T. A. Willson, E. M. Viney et al., “A family of cytokine-inducible inhibitors of signalling,” Nature, vol. 387, no. 6636, pp. 917–921, 1997. View at Publisher · View at Google Scholar · View at PubMed
  36. E. A. Bach, L. A. Ekas, A. Ayala-Camargo et al., “GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo,” Gene Expression Patterns, vol. 7, no. 3, pp. 323–331, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. T. Mukherjee, J. C. Hombría, and M. P. Zeidler, “Opposing roles for Drosophila JAK/STAT signalling during cellular proliferation,” Oncogene, vol. 24, no. 15, pp. 2503–2511, 2005. View at Publisher · View at Google Scholar · View at PubMed
  38. O. M. Vidal, W. Stec, N. Bausek, E. Smythe, and M. P. Zeidler, “Negative regulation of Drosophila JAK-STAT signalling by endocytic trafficking,” Journal of Cell Science, vol. 123, part 20, pp. 3457–3466, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. H. J. Müller, “Types of visible variations induced by X-rays in Drosophila,” Journal of Genetics, vol. 22, no. 3, pp. 299–334, 1930. View at Publisher · View at Google Scholar
  40. J. L. Leatherman and S. Dinardo, “Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal,” Cell Stem Sell, vol. 3, no. 1, pp. 44–54, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. S. R. Singh, Z. Zheng, H. Wang, S. W. Oh, X. Chen, and S. X. Hou, “Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling,” Journal of Cellular Physiology, vol. 223, no. 2, pp. 500–510, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. E. Decotto and A. C. Spradling, “The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals,” Developmental Cell, vol. 9, no. 4, pp. 501–510, 2005. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Beccari, L. Teixeira, and P. Rorth, “The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis,” Mechanisms of Development, vol. 111, no. 1-2, pp. 115–123, 2002. View at Publisher · View at Google Scholar
  44. R. Xi, J. R. McGregor, and D. A. Harrison, “A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium,” Developmental Cell, vol. 4, no. 2, pp. 167–177, 2003. View at Publisher · View at Google Scholar
  45. M. Grammont and K. D. Irvine, “Organizer activity of the polar cells during Drosophila oogenesis,” Development, vol. 129, no. 22, pp. 5131–5140, 2002.
  46. D. J. Montell, “Border-cell migration: the race is on,” Nature Reviews Molecular Cell Biology, vol. 4, no. 1, pp. 13–24, 2003. View at Publisher · View at Google Scholar · View at PubMed
  47. D. L. Silver, E. R. Geisbrecht, and D. J. Montell, “Requirement for JAK/STAT signaling throughout border cell migration in Drosophila,” Development, vol. 132, no. 15, pp. 3483–3492, 2005. View at Publisher · View at Google Scholar · View at PubMed
  48. H. Luo, W. P. Hanratty, and C. R. Dearolf, “An amino acid substitution in the Drosophila hop(Tum-l) Jak kinase causes leukemia-like hematopoietic defects,” EMBO Journal, vol. 14, no. 7, pp. 1412–1420, 1995.
  49. J. Krzemień, L. Dubois, R. Makki, M. Meister, A. Vincent, and M. Crozatier, “Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre,” Nature, vol. 446, no. 7133, pp. 325–328, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. R. Makki, M. Meister, D. Pennetier et al., “A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response,” PLoS Biology, vol. 8, no. 8, Article ID e1000441, pp. 33–34, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. H. J. Bellen, R. W. Levis, G. Liao et al., “The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes,” Genetics, vol. 167, no. 2, pp. 761–781, 2004. View at Publisher · View at Google Scholar · View at PubMed
  52. I. Almudi, H. Stocker, E. Hafen, M. Corominas, and F. Serras, “SOCS36E specifically interferes with sevenless signaling during Drosophila eye development,” Developmental Biology, vol. 326, no. 1, pp. 212–223, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. C. Brender, R. Columbus, D. Metcalf et al., “SOCS5 is expressed in primary B and T lymphoid cells but is dispensable for lymphocyte production and function,” Molecular and Cellular Biology, vol. 24, no. 13, pp. 6094–6103, 2004. View at Publisher · View at Google Scholar · View at PubMed
  54. P. C. Heinrich, I. Behrmann, S. Haan, H. M. Hermanns, G. Müller-Newen, and F. Schaper, “Principles of interleukin (IL)-6-type cytokine signalling and its regulation,” Biochemical Journal, vol. 374, part 1, pp. 1–20, 2003. View at Publisher · View at Google Scholar · View at PubMed
  55. K. Shuai and B. Liu, “Regulation of JAK-STAT signalling in the immune system,” Nature Reviews Immunology, vol. 3, no. 11, pp. 900–911, 2003.
  56. S. G. Rane and E. P. Reddy, “Janus kinases: components of multiple signaling pathways,” Oncogene, vol. 19, no. 49, pp. 5662–5679, 2000.
  57. J. F. de Celis and F. J. Diaz-Benjumea, “Developmental basis for vein pattern variations in insect wings,” International Journal of Developmental Biology, vol. 47, no. 7-8, pp. 653–663, 2003.
  58. B. Z. Shilo, “Signaling by the Drosophila epidermal growth factor receptor pathway during development,” Experimental Cell Research, vol. 284, no. 1, pp. 140–149, 2003. View at Publisher · View at Google Scholar
  59. M. A. Simon, “Receptor tyrosine kinases: specific outcomes from general signals,” Cell, vol. 103, no. 1, pp. 13–15, 2000.
  60. A. N. Bullock, M. C. Rodriguez, J. E. Debreczeni, Z. Songyang, and S. Knapp, “Structure of the SOCS4-elonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation,” Structure, vol. 15, no. 11, pp. 1493–1504, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. E. Kario, M. D. Marmor, K. Adamsky et al., “Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7038–7048, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. M. Freeman, “Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye,” Cell, vol. 87, no. 4, pp. 651–660, 1996. View at Publisher · View at Google Scholar
  63. M. A. Simon, D. D. L. Bowtell, G. S. Dodson, T. R. Laverty, and G. M. Rubin, “Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase,” Cell, vol. 67, no. 4, pp. 701–716, 1991.
  64. M. P. Zeidler, N. Perrimon, and D. I. Strutt, “Polarity determination in the Drosophila eye: a novel role for unpaired and JAK/STAT signaling,” Genes and Development, vol. 13, no. 10, pp. 1342–1353, 1999.
  65. F. Zadjali, A. C. W. Pike, M. Vesterlund et al., “Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 480–490, 2011. View at Publisher · View at Google Scholar · View at PubMed