About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2009 (2009), Article ID 532640, 7 pages
http://dx.doi.org/10.1155/2009/532640
Research Article

The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

1Division of Basic Medical Sciences, Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
2Department of Pediatric Medicine, Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
3Autism Research Institute, San Diego, CA 92116-2599, USA
4Center for Integrative Pediatric Medicine, Tucson, AZ 85711, USA
5Department of Mathematics, Whittier College, Whittier, CA 90601-4413, USA
6International Child Development Resource Center, Phoenix, AZ, USA
7Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA

Received 10 April 2009; Revised 30 June 2009; Accepted 12 July 2009

Academic Editor: Wei Zheng

Copyright © 2009 J. B. Adams et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bernard, A. Enayati, L. Redwood, H. Roger, and T. Binstock, “Autism: a novel form of mercury poisoning,” Medical Hypotheses, vol. 56, no. 4, pp. 462–471, 2001. View at Publisher · View at Google Scholar · View at PubMed
  2. G. C. Windham, L. Zhang, R. Gunier, L. A. Croen, and J. K. Grether, “Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area,” Environmental Health Perspectives, vol. 114, no. 9, pp. 1438–1444, 2006. View at Publisher · View at Google Scholar
  3. M. C. DeSoto and R. T. Hitlan, “Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set,” Journal of Child Neurology, vol. 22, no. 11, pp. 1308–1311, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. J. B. Adams, J. Romdalvik, V. M. S. Ramanujam, and M. S. Legator, “Mercury, lead, and zinc in baby teeth of children with autism versus controls,” Journal of Toxicology and Environmental Health Part A, vol. 70, no. 12, pp. 1046–1051, 2007. View at Publisher · View at Google Scholar · View at PubMed
  5. J. Bradstreet, D. A. Geier, J. J. Kartzinel, J. B. Adams, and M. R. Geier, “A case-control study of mercury burden in children with autistic spectrum disorders,” Journal of American Physicians and Surgeons, vol. 8, no. 3, pp. 76–79, 2003.
  6. C. Lord, M. Rutter, S. Goode, et al., “Autism diagnostic observation schedule: a standardized observation of communicative and social behavior,” Journal of Autism and Developmental Disorders, vol. 19, no. 2, pp. 185–212, 1989.
  7. I. L. Cohen, S. Schmidt-Lackner, R. Romanczyk, and V. Sudhalter, “The PDD behavior inventory: a rating scale for assessing response to intervention in children with pervasive developmental disorder,” Journal of Autism and Developmental Disorders, vol. 33, no. 1, pp. 31–45, 2003. View at Publisher · View at Google Scholar
  8. B. Rimland and S. Edelson, Autism Treatment Evaluation Checklist: Statistical Analyses, Autism Research Institute, San Diego, Calif, USA, 2000.
  9. R. K. Zalups, “Influence of 2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3- dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury,” Journal of Pharmacology and Experimental Therapeutics, vol. 267, no. 2, pp. 791–800, 1993.
  10. J. B. Adams, M. Baral, E. Geis, et al., “Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part A—medical results,” in submission.
  11. J. B. Adams, M. Baral, E. Geis, et al., “Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part B—behavior results,” in submission.
  12. S. J. James, P. Cutler, S. Melnyk, et al., “Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism,” American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1611–1617, 2004.
  13. S. J. James, S. Melnyk, S. Jernigan, et al., “Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism,” American Journal of Medical Genetics Part B, vol. 141, no. 8, pp. 947–956, 2006. View at Publisher · View at Google Scholar · View at PubMed
  14. D. A. Geier, J. K. Kern, C. R. Garver, et al., “Biomarkers of environmental toxicity and susceptibility in autism,” Journal of the Neurological Sciences, vol. 280, no. 1-2, pp. 101–108, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. A. S. Holmes, M. F. Blaxill, and B. E. Haley, “Reduced levels of mercury in first baby haircuts of autistic children,” International Journal of Toxicology, vol. 22, no. 4, pp. 277–285, 2003. View at Publisher · View at Google Scholar
  16. J. B. Adams, J. Romdalvik, K. E. Levine, and L.-W. Hu, “Mercury in first-cut baby hair of children with autism versus typically-developing children,” Toxicological and Environmental Chemistry, vol. 90, no. 4, pp. 739–753, 2008. View at Publisher · View at Google Scholar