About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2011 (2011), Article ID 328120, 10 pages
http://dx.doi.org/10.1155/2011/328120
Review Article

Biomarkers of Acute Kidney Injury

1Division of Renal Diseases & Hypertension, University of Colorado Health Sciences Center, Mail Stop C-281, 12700 East 19th Avenue, Aurora, CO 80045, USA
2Department of Anesthesiology, University of Colorado Health Sciences Center, Mail Stop C-281, 12700 East 19th Avenue, Aurora, CO 80045, USA

Received 27 May 2011; Accepted 2 September 2011

Academic Editor: P. J. O'Brien

Copyright © 2011 Jeffrey C. Sirota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Lameire, W. van Biesen, and R. Vanholder, “The changing epidemiology of acute renal failure,” Nature Clinical Practice Nephrology, vol. 2, no. 7, pp. 364–377, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. Y. P. Ympa, Y. Sakr, K. Reinhart, and J. L. Vincent, “Has mortality from acute renal failure decreased? A systematic review of the literature,” American Journal of Medicine, vol. 118, no. 8, pp. 827–832, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. A. Stevens and A. S. Levey, “Measurement of kidney function,” Medical Clinics of North America, vol. 89, no. 3, pp. 457–473, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. P. Kassirer, “Clinical evaluation of kidney function–glomerular function,” The New England Journal of Medicine, vol. 285, no. 7, pp. 385–389, 1971. View at Scopus
  5. S. M. Bagshaw and R. T. N. Gibney, “Conventional markers of kidney function,” Critical Care Medicine, vol. 36, no. 4, pp. S152–S158, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. L. A. Stevens, R. A. Lafayette, R. D. Perrone, and A. S. Levey, “Laboratory evaluation of kidney function,” in Diseases of the Kidney and Urinary Tract, R. W. Schrier, Ed., pp. 299–336, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 8th edition, 2007.
  7. R. A. Star, “Treatment of acute renal failure,” Kidney International, vol. 54, no. 6, pp. 1817–1831, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. M. Moran and B. D. Myers, “Course of acute renal failure studied by a model of creatinine kinetics,” Kidney International, vol. 27, no. 6, pp. 928–937, 1985. View at Scopus
  9. O. Shemesh, H. Golbetz, J. P. Kriss, and B. D. Myers, “Limitations of creatinine as a filtration marker in glomerulopathic patients,” Kidney International, vol. 28, no. 5, pp. 830–838, 1985. View at Scopus
  10. D. S. Wishart, “Metabolomics: the principles and potential applications to transplantation,” American Journal of Transplantation, vol. 5, no. 12, pp. 2814–2820, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. Wishart, “Metabolomics: a complementary tool in renal transplantation,” Contributions to Nephrology, vol. 160, pp. 76–87, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. J. P. Shockcor and E. Holmes, “Metabonomic applications in toxicity screening and disease diagnosis,” Current Topics in Medicinal Chemistry, vol. 2, no. 1, pp. 35–51, 2002. View at Scopus
  13. C. U. Niemann and N. J. Serkova, “Biochemical mechanisms of nephrotoxicity: application for metabolomics,” Expert Opinion on Drug Metabolism and Toxicology, vol. 3, no. 4, pp. 527–544, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. K. J. Boudonck, M. W. Mitchell, L. Német et al., “Discovery of metabolomics biomarkers for early detection of nephrotoxicity,” Toxicologic Pathology, vol. 37, no. 3, pp. 280–292, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. N. J. Serkova and C. U. Niemann, “Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics,” Expert Review of Molecular Diagnostics, vol. 6, no. 5, pp. 717–731, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Mishra, C. Dent, R. Tarabishi et al., “Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery,” The Lancet, vol. 365, no. 9466, pp. 1231–1238, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. C. L. Dent, Q. Ma, S. Dastrala et al., “Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study,” Critical Care, vol. 11, no. 6, p. R127, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. C. R. Parikh, J. Mishra, H. Thiessen-Philbrook et al., “Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery,” Kidney International, vol. 70, no. 1, pp. 199–203, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. C. R. Parikh, P. Devarajan, M. Zappitelli, et al., “Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery,” Journal of the American Society of Nephrology, vol. 22, no. 9, p. 1737, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. G. Wagener, M. Jan, M. Kim et al., “Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery,” Anesthesiology, vol. 105, no. 3, pp. 485–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Haase-Fielitz, R. Bellomo, P. Devarajan et al., “Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study,” Critical Care Medicine, vol. 37, no. 2, pp. 553–560, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Haase-Fielitz, R. Bellomo, P. Devarajan et al., “The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury,” Nephrology Dialysis Transplantation, vol. 24, no. 11, pp. 3349–3354, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Haase, R. Bellomo, P. Devarajan et al., “Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults,” Annals of Thoracic Surgery, vol. 88, no. 1, pp. 124–130, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. M. Tuladhar, V. O. Püntmann, M. Soni, P. P. Punjabi, and R. G. Bogle, “Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass,” Journal of Cardiovascular Pharmacology, vol. 53, no. 3, pp. 261–266, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. C. Xin, X. Yulong, C. Yu, C. Changchun, Z. Feng, and M. Xinwei, “Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery,” Renal Failure, vol. 30, no. 9, pp. 904–913, 2008. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Haase, R. Bellomo, D. Story, P. Davenport, and A. Haase-Fielitz, “Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study,” Critical Care, vol. 12, no. 4, p. R96, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. W. K. Han, G. Wagener, Y. Zhu, S. Wang, and H. T. Lee, “Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 5, pp. 873–882, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. J. L. Koyner, V. S. Vaidya, M. R. Bennett et al., “Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2154–2165, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. J. L. Koyner, M. R. Bennett, E. M. Worcester et al., “Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery,” Kidney International, vol. 74, no. 8, pp. 1059–1069, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. M. Nejat, J. W. Pickering, R. J. Walker et al., “Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit,” Critical Care, vol. 14, no. 3, p. R85, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Zappitelli, K. K. Washburn, A. A. Arikan et al., “Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study,” Critical Care, vol. 11, no. 4, p. R84, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. D. S. Wheeler, P. Devarajan, Q. Ma et al., “Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock,” Critical Care Medicine, vol. 36, no. 4, pp. 1297–1303, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. K. K. Washburn, M. Zappitelli, A. A. Arikan et al., “Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children,” Nephrology Dialysis Transplantation, vol. 23, no. 2, pp. 566–572, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. Du, M. Zappitelli, A. Mian, et al., “Urinary biomarkers to detect acute kidney injury in the pediatric emergency center,” Pediatric Nephrology, vol. 26, no. 2, pp. 267–274, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. J. M. Constantin, E. Futier, S. Perbet et al., “Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study,” Journal of Critical Care, vol. 25, no. 1, pp. 176.e1–176.e6, 2010. View at Publisher · View at Google Scholar · View at PubMed
  36. J. Mårtensson, M. Bell, A. Oldner, S. Xu, P. Venge, and C. R. Martling, “Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury,” Intensive Care Medicine, vol. 36, no. 8, pp. 1333–1340, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. D. N. Cruz, M. de Cal, F. Garzotto et al., “Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population,” Intensive Care Medicine, vol. 36, no. 3, pp. 444–451, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. O. Liangos, M. C. Perianayagam, V. S. Vaidya et al., “Urinary N-acetyl-β-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure,” Journal of the American Society of Nephrology, vol. 18, no. 3, pp. 904–912, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. C. C. Szeto, B. C. H. Kwan, K. B. Lai et al., “Urinary expression of kidney injury markers in renal transplant recipients,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2329–2337, 2010. View at Publisher · View at Google Scholar · View at PubMed
  40. I. E. Hall, J. L. Koyner, M. D. Doshi, R. J. Marcus, and C. R. Parikh, “Urine cystatin C as a biomarker of proximal tubular function immediately after kidney transplantation,” American Journal of Nephrology, vol. 33, no. 5, pp. 407–413, 2011. View at Publisher · View at Google Scholar · View at PubMed
  41. R. Hirsch, C. Dent, H. Pfriem et al., “NGAL is an early predictive biomarker of contrast-induced nephropathy in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2089–2095, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. H. Bachorzewska-Gajewska, J. Malyszko, E. Sitniewska, J. S. Malyszko, and S. Dobrzycki, “Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions,” American Journal of Nephrology, vol. 26, no. 3, pp. 287–292, 2006. View at Publisher · View at Google Scholar · View at PubMed
  43. M. Haase, R. Bellomo, P. Devarajan, P. Schlattmann, and A. Haase-Fielitz, “Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 54, no. 6, pp. 1012–1024, 2009.
  44. C. B. Gul, M. Gullulu, B. Oral et al., “Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention?” Clinical Biochemistry, vol. 41, no. 7-8, pp. 544–547, 2008. View at Publisher · View at Google Scholar · View at PubMed
  45. W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron—Clinical Practice, vol. 108, no. 3, pp. c176–c181, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. J. Mishra, K. Mori, Q. Ma, C. Kelly, J. Barasch, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity,” American Journal of Nephrology, vol. 24, no. 3, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology—Renal Physiology, vol. 290, no. 2, pp. F517–F529, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. T. Ichimura, C. C. Hung, S. A. Yang, J. L. Stevens, and J. V. Bonventre, “Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury,” American Journal of Physiology—Renal Physiology, vol. 286, no. 3, pp. F552–F563, 2004.
  49. Y. Togashi, Y. Sakaguchi, M. Miyamoto, and Y. Miyamoto, “Urinary cystatin C as a biomarker for acute kidney injury and its immunohistochemical localization in kidney in the CDDP-treated rats,” Experimental and Toxicologic Pathology. In press. View at Publisher · View at Google Scholar · View at PubMed
  50. F. Gaspari, P. Cravedi, M. Mandalà et al., “Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study,” Nephron—Clinical Practice, vol. 115, no. 2, pp. c154–c160, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. K. Negishi, E. Noiri, K. Doi et al., “Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury,” American Journal of Pathology, vol. 174, no. 4, pp. 1154–1159, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. K. M. Schmidt-Ott, K. Mori, Y. L. Jau et al., “Dual action of neutrophil gelatinase-associated lipocalin,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 407–413, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. J. Mishra, Q. Ma, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003. View at Publisher · View at Google Scholar
  54. M. Alvelos, R. Pimentel, E. Pinho et al., “Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 3, pp. 476–481, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. A. J. Portal, M. J. W. McPhail, M. Bruce et al., “Neutrophil gelatinase—associated lipocalin predicts acute kidney injury in patients undergoing liver transplantation,” Liver Transplantation, vol. 16, no. 11, pp. 1257–1266, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. T. L. Nickolas, M. J. O'Rourke, J. Yang et al., “Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury,” Annals of Internal Medicine, vol. 148, no. 11, pp. 810–819, 2008.
  57. K. Makris, N. Markou, E. Evodia et al., “Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 1, pp. 79–82, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. H. R. H. de Geus, J. Bakker, E. M. E. H. Lesaffre, and J. L. M. L. Le Noble, “Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 7, pp. 907–914, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. E. Singer, A. Elger, S. Elitok et al., “Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes,” Kidney International, vol. 80, pp. 405–414, 2011. View at Publisher · View at Google Scholar · View at PubMed
  60. V. Y. Melnikov, T. Ecder, G. Fantuzzi et al., “Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure,” Journal of Clinical Investigation, vol. 107, no. 9, pp. 1145–1152, 2001.
  61. V. Y. Melnikov, S. Faubel, B. Siegmund, M. Scott Lucia, D. Ljubanovic, and C. L. Edelstein, “Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice,” Journal of Clinical Investigation, vol. 110, no. 8, pp. 1083–1091, 2002. View at Publisher · View at Google Scholar
  62. Z. He, L. Lu, C. Altmann et al., “Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury,” American Journal of Physiology—Renal Physiology, vol. 295, no. 5, pp. F1414–F1421, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. H. Wu, M. L. Craft, P. Wang et al., “IL-18 contributes to renal damage after ischemia-reperfusion,” Journal of the American Society of Nephrology, vol. 19, no. 12, pp. 2331–2341, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. C. L. Edelstein, T. S. Hoke, H. Somerset et al., “Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1052–1061, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. C. R. Parikh, A. Jani, V. Y. Melnikov, S. Faubel, and C. L. Edelstein, “Urinary interleukin-18 is a marker of human acute tubular necrosis,” American Journal of Kidney Diseases, vol. 43, no. 3, pp. 405–414, 2004. View at Publisher · View at Google Scholar
  66. C. R. Parikh, E. Abraham, M. Ancukiewicz, and C. L. Edelstein, “Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3046–3052, 2005. View at Publisher · View at Google Scholar · View at PubMed
  67. E. D. Siew, T. A. Ikizler, T. Gebretsadik et al., “Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 8, pp. 1497–1505, 2010. View at Publisher · View at Google Scholar · View at PubMed
  68. C. R. Parikh, S. G. Coca, H. Thiessen-Philbrook, et al., “Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery,” Journal of the American Society of Nephrology, vol. 22, no. 9, p. 1748, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. T. Ichimura, J. V. Bonventre, V. Bailly et al., “Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 4135–4142, 1998. View at Publisher · View at Google Scholar
  70. V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology—Renal Physiology, vol. 290, no. 2, pp. F517–F529, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. V. S. Vaidya, G. M. Ford, S. S. Waikar et al., “A rapid urine test for early detection of kidney injury,” Kidney International, vol. 76, no. 1, pp. 108–114, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. W. K. Han, V. Bailly, R. Abichandani, R. Thadhani, and J. V. Bonventre, “Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury,” Kidney International, vol. 62, no. 1, pp. 237–244, 2002. View at Publisher · View at Google Scholar · View at PubMed
  73. J. Westhuyzen, “Cystatin C: a promising marker and predictor of impaired renal function,” Annals of Clinical and Laboratory Science, vol. 36, no. 4, pp. 387–394, 2006.
  74. S. Herget-Rosenthal, G. Marggraf, J. Hüsing et al., “Early detection of acute renal failure by serum cystatin C,” Kidney International, vol. 66, no. 3, pp. 1115–1122, 2004. View at Publisher · View at Google Scholar · View at PubMed
  75. K. Uchida and A. Gotoh, “Measurement of cystatin-C and creatinine in urine,” Clinica Chimica Acta, vol. 323, no. 1-2, pp. 121–128, 2002. View at Publisher · View at Google Scholar
  76. M. Conti, S. Moutereau, M. Zater et al., “Urinary cystatin C as a specific marker of tubular dysfunction,” Clinical Chemistry and Laboratory Medicine, vol. 44, no. 3, pp. 288–291, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. M. R. Rudnick, A. Kesselheim, and S. Goldfarb, “Contrast-induced nephropathy: how it develops, how to prevent it,” Cleveland Clinic Journal of Medicine, vol. 73, no. 1, pp. 75–87, 2006. View at Publisher · View at Google Scholar
  78. P. McCullough, “Outcomes of contrast-induced nephropathy: experience in patients undergoing cardiovascular intervention,” Catheterization and Cardiovascular Interventions, vol. 67, no. 3, pp. 335–343, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. O. G. Shaker, A. El-Shehaby, and M. El-Khatib, “Early diagnostic markers for contrast nephropathy in patients undergoing coronary angiography,” Angiology, vol. 61, no. 8, pp. 731–736, 2010.
  80. X. Yao, K. Panichpisal, N. Kurtzman, and K. Nugent, “Cisplatin nephrotoxicity: a review,” American Journal of the Medical Sciences, vol. 334, no. 2, pp. 115–124, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. J. C. Gautier, B. Riefke, J. Walter et al., “Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with cisplatin,” Toxicologic Pathology, vol. 38, no. 6, pp. 943–956, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. V. S. Vaidya, J. S. Ozer, F. Dieterle et al., “Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies,” Nature Biotechnology, vol. 28, no. 5, pp. 478–485, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. W. C. Prozialeck, J. R. Edwards, V. S. Vaidya, and J. V. Bonventre, “Preclinical evaluation of novel urinary biomarkers of cadmium nephrotoxicity,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 301–305, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. A. Trevisan, A. Chiusolo, R. Defazio et al., “Kidney injury molecule-1 expression in rat proximal tubule after treatment with segment-specific nephrotoxicants: a tool for early screening of potential kidney toxicity,” Toxicologic Pathology, vol. 38, no. 3, pp. 338–345, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. Y. Tonomura, N. Tsuchiya, M. Torii, and T. Uehara, “Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats,” Toxicology, vol. 273, no. 1–3, pp. 53–59, 2010. View at Publisher · View at Google Scholar · View at PubMed
  86. F. Dieterle, E. Perentes, A. Cordier, et al., “Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury,” Nature Biotechnology, vol. 28, no. 5, pp. 463–469, 2010.
  87. A. Jaafar, S. Séronie-Vivien, L. Malard, P. Massip, E. Chatelut, and I. Tack, “Urinary cystatin C can improve the renal safety follow-up of tenofovir-treated patients,” AIDS, vol. 23, no. 2, pp. 257–259, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. O. Fiehn, “Metabolomics—the link between genotypes and phenotypes,” Plant Molecular Biology, vol. 48, no. 1-2, pp. 155–171, 2002. View at Publisher · View at Google Scholar
  89. D. Portilla, L. Schnackenberg, and R. D. Beger, “Metabolomics as an extension of proteomic analysis: study of acute kidney injury,” Seminars in Nephrology, vol. 27, no. 6, pp. 609–620, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. J. R. Chapman, P. J. O'Connell, and B. J. Nankivell, “Chronic renal allograft dysfunction,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3015–3026, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. E. M. Lenz, J. Bright, R. Knight, I. D. Wilson, and H. Major, “Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics,” Journal of Pharmaceutical and Biomedical Analysis, vol. 35, no. 3, pp. 599–608, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. U. Christians, V. Schmitz, W. Schöning et al., “Toxicodynamic therapeutic drug monitoring of immunosuppressants: promises, reality, and challenges,” Therapeutic Drug Monitoring, vol. 30, no. 2, pp. 151–158, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. J. Klawitter, J. Klawitter, E. Kushner et al., “Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study,” Journal of Proteome Research, vol. 9, no. 2, pp. 865–875, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. J. Klawitter, J. Bendrick-Peart, B. Rudolph et al., “Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function,” Chemical Research in Toxicology, vol. 22, no. 1, pp. 118–128, 2009. View at Publisher · View at Google Scholar · View at PubMed
  95. L. Le Moyec, A. Pruna, M. Eugene et al., “Proton nuclear magnetic resonance spectroscopy of urine and plasma in renal transplantation follow-up,” Nephron, vol. 65, no. 3, pp. 433–439, 1993.
  96. P. J. D. Foxall, G. J. Mellotte, M. R. Bending, J. C. Lindon, and J. K. Nicholson, “NMR spectroscopy as a novel approach to the monitoring of renal transplant function,” Kidney International, vol. 43, no. 1, pp. 234–245, 1993.
  97. J. N. Wang, Y. Zhou, T. Y. Zhu, X. Wang, and Y. L. Guo, “Prediction of acute cellular renal allograft rejection by urinary metabolomics using MALDI-FTMS,” Journal of Proteome Research, vol. 7, no. 8, pp. 3597–3601, 2008. View at Publisher · View at Google Scholar · View at PubMed
  98. J. Klawitter, M. Haschke, C. Kahle, C. Dingmann, D. Leibfritz, and U. Christians, “Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose,” British Journal of Clinical Pharmacology, vol. 70, pp. 241–251, 2010.
  99. L. Stapenhorst, R. Sassen, B. Beck, N. Laube, A. Hesse, and B. Hoppe, “Hypocitraturia as a risk factor for nephrocalcinosis after kidney transplantation,” Pediatric Nephrology, vol. 20, no. 5, pp. 652–656, 2005. View at Publisher · View at Google Scholar · View at PubMed
  100. A. Hunter and W. R. Campbell, “The probable accuracy, in whole blood and plasma, of colorimetric determinations of creatinine and creatine,” Journal of Biological Chemistry, vol. 32, p. 195, 1917.