About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 325250, 8 pages
http://dx.doi.org/10.1155/2012/325250
Research Article

A Lipocalin-Derived Peptide Modulating Fibroblasts and Extracellular Matrix Proteins

1Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
2Center for Applied Toxinology, Butantan Institute, 05503-900 São Paulo, SP, Brazil
3Department of Orthopedics and Traumatology, Faculty of Medicine, University of São Paulo, 01246-903 São Paulo, SP, Brazil

Received 3 January 2012; Revised 23 February 2012; Accepted 15 April 2012

Academic Editor: Yonghua Ji

Copyright © 2012 Linda Christian Carrijo-Carvalho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. McAnulty, “Fibroblasts and myofibroblasts: their source, function and role in disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 4, pp. 666–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Fisher, J. Varani, and J. J. Voorhees, “Looking older: fibroblast collapse and therapeutic implications,” Archives of Dermatology, vol. 144, no. 5, pp. 666–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Hodde and C. E. Johnson, “Extracellular matrix as a strategy for treating chronic wounds,” American Journal of Clinical Dermatology, vol. 8, no. 2, pp. 61–66, 2007. View at Scopus
  4. H. Ihn, “Scleroderma, fibroblasts, signaling, and excessive extracellular matrix,” Current Rheumatology Reports, vol. 7, no. 2, pp. 156–162, 2005. View at Scopus
  5. T. A. Wynn, “Cellular and molecular mechanisms of fibrosis,” Journal of Pathology, vol. 214, no. 2, pp. 199–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Riley, “Chronic tendon pathology: molecular basis and therapeutic implications,” Expert Reviews in Molecular Medicine, vol. 7, no. 5, pp. 1–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Black, J. Vibe-Petersen, L. N. Jorgensen et al., “Decrease of collagen deposition in wound repair in type 1 diabetes independent of glycemic control,” Archives of Surgery, vol. 138, no. 1, pp. 34–40, 2003. View at Scopus
  8. R. L. Chevalier, B. A. Thornhill, M. S. Forbes, and S. C. Kiley, “Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy,” Pediatric Nephrology, vol. 25, no. 4, pp. 687–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Sacco, M. Silvestri, F. Sabatini, R. Sale, A. C. Defilippi, and G. A. Rossi, “Epithelial cells and fibroblasts: structural repair and remodelling in the airways,” Paediatric Respiratory Reviews, vol. 5, pp. S35–S40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Rutschow, J. Li, H. P. Schultheiss, and M. Pauschinger, “Myocardial proteases and matrix remodeling in inflammatory heart disease,” Cardiovascular Research, vol. 69, no. 3, pp. 646–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Xu and P. Venge, “Lipocalins as biochemical markers of disease,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 298–307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. A. Thomas, S. M. Laws, J. G. Sutcliffe et al., “Apolipoprotein D levels are elevated in prefrontal cortex of subjects with Alzheimer's disease: no relation to apolipoprotein E expression or genotype,” Biological Psychiatry, vol. 54, no. 2, pp. 136–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Hemdahl, A. Gabrielsen, C. Zhu et al., “Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 136–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Mori and K. Nakao, “Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage,” Kidney International, vol. 71, no. 10, pp. 967–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Yang and M. A. Moses, “Lipocalin 2: a multifaceted modulator of human cancer,” Cell Cycle, vol. 8, no. 15, pp. 2347–2352, 2009. View at Scopus
  16. H. J. Kim, H. J. Je, H. M. Cheon et al., “Accumulation of 23 kDa lipocalin during brain development and injury in Hyphantria cunea,” Insect Biochemistry and Molecular Biology, vol. 35, no. 10, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. Ganfornina, S. Do Carmo, E. Martínez et al., “ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury,” Glia, vol. 58, no. 11, pp. 1320–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Petta, C. Tripodo, S. Grimaudo et al., “High liver RBP4 protein content is associated with histological features in patients with genotype 1 chronic hepatitis C and with nonalcoholic steatohepatitis,” Digestive and Liver Disease, vol. 43, no. 5, pp. 404–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Spreyer, H. Schaal, G. Kuhn et al., “Regeneration-associated high level expression of apolipoprotein D mRNA in endoneurial fibroblasts of peripheral nerve,” EMBO Journal, vol. 9, no. 8, pp. 2479–2484, 1990. View at Scopus
  20. R. J. Playford, A. Belo, R. Poulsom et al., “Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair,” Gastroenterology, vol. 131, no. 3, pp. 809–817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Kawahara, A. Hikosaka, T. Sasado, and K. Hirota, “Thyroid hormone-dependent repression of α1-microglobulin/bikunin precursor (AMBP) gene expression during amphibian metamorphosis,” Development Genes and Evolution, vol. 206, no. 6, pp. 355–362, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Yamauchi, H. A. Takeuchi, M. Overall, M. Dziadek, S. L. A. Munro, and G. Schreiber, “Structural characteristics of bullfrog (Rana catesbeiana) transthyretin and its cDNA. Comparison of its pattern of expression during metamorphosis with that of lipocalin,” European Journal of Biochemistry, vol. 256, no. 2, pp. 287–296, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Stewart, M. W. Kennedy, and S. Suire, “A novel uterine lipocalin supporting pregnancy in equids,” Cellular and Molecular Life Sciences, vol. 57, no. 10, pp. 1373–1378, 2000. View at Scopus
  24. F. D. Cancedda, B. Dozin, B. Zerega, S. Cermelli, and R. Cancedda, “Ex-FABP: a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 127–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Pagano, P. Giannoni, A. Zambotti et al., “CALβ, a novel lipocalin associated with chondrogenesis and inflammation,” European Journal of Cell Biology, vol. 81, no. 5, pp. 264–272, 2002. View at Scopus
  26. D. Sanchez, M. D. Ganfornina, and M. J. Bastiani, “Developmental expression of the lipocalin Lazarillo and its role in axonal pathfinding in the grasshopper embryo,” Development, vol. 121, no. 1, pp. 135–147, 1995. View at Scopus
  27. C. Gentili, G. Tutolo, B. Zerega, E. Di Marco, R. Cancedda, and F. Descalzi Cancedda, “Acute phase lipocalin Ex-FABP is involved in heart development and cell survival,” Journal of Cellular Physiology, vol. 202, no. 3, pp. 683–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Li, V. Korzh, and Z. Gong, “Localized rbp4 expression in the yolk syncytial layer plays a role in yolk cell extension and early liver development,” BMC Developmental Biology, vol. 7, article 117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. E. Ricci-Silva, R. H. Valente, I. R. León et al., “Immunochemical and proteomic technologies as tools for unravelling toxins involved in envenoming by accidental contact with Lonomia obliqua caterpillars,” Toxicon, vol. 51, no. 6, pp. 1017–1028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. G. Veiga, J. M. C. Ribeiro, J. A. Guimarães, and I. M. B. Francischetti, “A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome,” Gene, vol. 355, no. 1-2, pp. 11–27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. R. Flower, A. C. T. North, and T. K. Attwood, “Structure and sequence relationships in the lipocalins and related proteins,” Protein Science, vol. 2, no. 5, pp. 753–761, 1993. View at Scopus
  32. D. R. Flower, “The lipocalin protein family: structure and function,” Biochemical Journal, vol. 318, no. 1, pp. 1–14, 1996. View at Scopus
  33. A. M. Chudzinski-Tavassi, L. C. Carrijo-Carvalho, K. Waismam, S. H. P. Farsky, O. H. P. Ramos, and C. V. Reis, “A lipocalin sequence signature modulates cell survival,” FEBS Letters, vol. 584, no. 13, pp. 2896–2900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Rozario and D. W. DeSimone, “The extracellular matrix in development and morphogenesis: a dynamic view,” Developmental Biology, vol. 341, no. 1, pp. 126–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Do Carmo, L. C. Levros Jr., and E. Rassart, “Modulation of apolipoprotein D expression and translocation under specific stress conditions,” Biochimica et Biophysica Acta, vol. 1773, no. 6, pp. 954–969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. C. T. North, “Three-dimensional arrangement of conserved amino acid residues in a superfamily of specific ligand-binding proteins,” International Journal of Biological Macromolecules, vol. 11, no. 1, pp. 56–58, 1989. View at Scopus
  37. C. V. Reis, S. A. Andrade, O. H. P. Ramos et al., “Lopap, a prothrombin activator from Lonomia obliqua belonging to the lipocalin family: recombinant production, biochemical characterization and structure-function insights,” Biochemical Journal, vol. 398, no. 2, pp. 295–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Chudzinski-Tavassi, M. Schattner, M. Fritzen et al., “Effects of Lopap on human endothelial cells and platelets,” Haemostasis, vol. 31, no. 3–6, pp. 257–265, 2001. View at Scopus
  39. M. Fritzen, M. P. A. Flores, C. V. Reis, and A. M. Chudzinski-Tavassi, “A prothrombin activator (Lopap) modulating inflammation, coagulation and cell survival mechanisms,” Biochemical and Biophysical Research Communications, vol. 333, no. 2, pp. 517–523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Waismam, A. M. Chudzinski-Tavassi, L. C. Carrijo-Carvalho, M. T. Fernandes Pacheco, and S. H. P. Farsky, “Lopap: a non-inflammatory and cytoprotective molecule in neutrophils and endothelial cells,” Toxicon, vol. 53, no. 6, pp. 652–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Berman, P. Gray, E. Chen et al., “Sequence analysis, cellular localization, and expression of a neuroretina adhesion and cell survival molecule,” Cell, vol. 51, no. 1, pp. 135–142, 1987. View at Scopus
  42. M. Taniike, I. Mohri, N. Eguchi, C. T. Beuckmann, K. Suzuki, and Y. Urade, “Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model,” Journal of Neuroscience, vol. 22, no. 12, pp. 4885–4896, 2002. View at Scopus
  43. Z. Tong, X. Wu, D. Ovcharenko, J. Zhu, C. S. Chen, and J. P. Kehrer, “Neutrophil gelatinase-associated lipocalin as a survival factor,” Biochemical Journal, vol. 391, no. 2, pp. 441–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Bullwinkel, B. Baron-Lühr, A. Lüdemann, C. Wohlenberg, J. Gerdes, and T. Scholzen, “Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells,” Journal of Cellular Physiology, vol. 206, no. 3, pp. 624–635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Li, M. L. Varney, J. Valasek, M. Godfrey, B. J. Dave, and R. K. Singh, “Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis,” Angiogenesis, vol. 8, no. 1, pp. 63–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. L. A. Madge and J. S. Pober, “A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFκB in human endothelial cells,” The Journal of Biological Chemistry, vol. 275, no. 20, pp. 15458–15465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Ellingsgaard, J. A. Ehses, E. B. Hammar et al., “Interleukin-6 regulates pancreatic α-cell mass expansion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13163–13168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” Journal of Leukocyte Biology, vol. 69, no. 4, pp. 513–521, 2001. View at Scopus
  49. S. Werner and R. Grose, “Regulation of wound healing by growth factors and cytokines,” Physiological Reviews, vol. 83, no. 3, pp. 835–870, 2003. View at Scopus