About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 356126, 6 pages
http://dx.doi.org/10.1155/2012/356126
Research Article

Genetic Variations of Glutathione S-Transferase Influence on Blood Cadmium Concentration

1Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2Health Office, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand
3Excellence Service Center For Medical Technology and Quality Improvement, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
4Office of Research Academic and Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
5Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
6Division of Clinical Pharmacology and Toxicology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Received 13 October 2011; Accepted 16 November 2011

Academic Editor: J. J. Stegeman

Copyright © 2012 Nitchaphat Khansakorn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Klaassen, Ed., Casarett and Doull's Toxicology: The Basic Science of Poisons, McGraw-Hill, New York, NY, USA, 7th edition, 2008.
  2. M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. D. Klaassen, J. Liu, and S. Choudhuri, “Metallothionein: an intracellular protein to protect against cadmium toxicity,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 267–294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Jin, J. Lu, and M. Nordberg, “Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein,” NeuroToxicology, vol. 19, no. 4-5, pp. 529–536, 1998. View at Scopus
  5. A. Rossini, D. C. M. Rapozo, L. M. F. Amorim et al., “Frequencies of GSTM1, GSTT1, and GSTP1 polymorphisms in a Brazilian population,” Genetics and Molecular Research, vol. 1, no. 3, pp. 233–240, 2002. View at Scopus
  6. N. Ballatori, “Transport of toxic metals by molecular mimicry,” Environmental Health Perspectives, vol. 110, no. 5, pp. 689–694, 2002. View at Scopus
  7. R. C. Strange, P. W. Jones, and A. A. Fryer, “Glutathione S-transferase: genetics and role in toxicology,” Toxicology Letters, vol. 112-113, pp. 357–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Autrup, “Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response,” Mutation Research, vol. 464, no. 1, pp. 65–76, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Gundacker, G. Komarnicki, P. Jagiello et al., “Glutathione-S-transferase polymorphism, metallothionein expression, and mercury levels among students in Austria,” Science of the Total Environment, vol. 385, no. 1–3, pp. 37–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. B. Ketelslegers, R. W. H. Gottschalk, G. Koppen et al., “Multiplex genotyping as a biomarker for susceptibility to carcinogenic exposure in the FLEHS biomonitoring study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 1902–1912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Sritara, S. Cheepudomwit, N. Chapman et al., “Twelve-year changes in vascular risk factors and their associations with mortality in a cohort of 3499 Thais: The Electricity Generating Authority of Thailand study,” International Journal of Epidemiology, vol. 32, no. 3, pp. 461–468, 2003. View at Scopus
  12. K. S. Subramanian and J. C. Meranger, “A rapid electrothermal atomic absorption spectrophotometric method for cadmium and lead in human whole blood,” Clinical Chemistry, vol. 27, no. 11, pp. 1866–1871, 1981. View at Scopus
  13. S. A. Miller, D. D. Dykes, and H. F. Polesky, “A simple salting out procedure for extracting DNA from human nucleated cells,” Nucleic Acids Research, vol. 16, no. 3, p. 1215, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. B. R. Packer, M. Yeager, B. Staats et al., “SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes,” Nucleic Acids Research, vol. 32, no. Database Issue, pp. D528–D32, 2004.
  15. J. Sirivarasai, S. Kaojaren, W. Wananukul, and P. Srisomerang, “Non-occupational determinants of cadmium and lead in blood and urine among a general population in Thailand,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 33, no. 1, pp. 180–187, 2002. View at Scopus
  16. A. Batáriová, V. Spěváčková, B. Beneš, M. Čejchanová, J. Šmíd, and M. Černá, “Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values,” International Journal of Hygiene and Environmental Health, vol. 209, no. 4, pp. 359–366, 2006. View at Publisher · View at Google Scholar
  17. O. Cekic, “Effect of cigarette smoking on copper, lead, and cadmium accumulation in human lens,” British Journal of Ophthalmology, vol. 82, no. 2, pp. 186–188, 1998. View at Scopus
  18. L. Farzin, M. Amiri, H. Shams, M. A. Ahmadi Faghih, and M. E. Moassesi, “Blood levels of lead, cadmium, and mercury in residents of Tehran,” Biological Trace Element Research, vol. 123, no. 1–3, pp. 14–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. N. S. Kim and B. K. Lee, “National estimates of blood lead, cadmium, and mercury levels in the Korean general adult population,” International Archives of Occupational and Environmental Health, vol. 84, no. 1, pp. 53–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Pakakasama, E. Mukda, W. Sasanakul et al., “Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia,” American Journal of Hematology, vol. 79, no. 3, pp. 202–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Pisani, P. Srivatanakul, J. Randerson-Moor et al., “GSTM1 and CYP1A1 polymorphisms, tobacco, air pollution, and lung cancer: a study in rural Thailand,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 4, pp. 667–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Gatedee, S. Pakakassama, S. Muangman, and W. Pongstaporn, “Glutathione S-transferase P1 genotypes, genetic susceptibility and outcome of therapy in thai childhood acute lymphoblastic leukemia,” Asian Pacific Journal of Cancer Prevention, vol. 8, no. 2, pp. 294–296, 2007. View at Scopus
  23. J. D. Hayes and R. C. Strange, “Glutathione S-transferase polymorphisms and their biological consequences,” Pharmacology, vol. 61, no. 3, pp. 154–166, 2000. View at Scopus
  24. K. S. Engström, U. Strömberg, T. Lundh et al., “Genetic variation in glutathione-related genes and body burden of methylmercury,” Environmental Health Perspectives, vol. 116, no. 6, pp. 734–739, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. M. Custodio, K. Broberg, M. Wennberg et al., “Polymorphisms in glutathione-related genes affect methylmercury retention,” Archives of Environmental Health, vol. 59, no. 11, pp. 588–595, 2004. View at Scopus
  26. M. Dušinská, A. Ficek, A. Horská et al., “Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans,” Mutation Research, vol. 482, no. 1-2, pp. 47–55, 2001.