About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 359471, 11 pages
http://dx.doi.org/10.1155/2012/359471
Review Article

Physiologically Based Toxicokinetic Modelling as a Tool to Support Risk Assessment: Three Case Studies

1Federal Institute for Risk Assessment, Max Dohrn Strasse 8-10, 10589 Berlin, Germany
2Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Received 10 October 2011; Revised 28 January 2012; Accepted 16 February 2012

Academic Editor: Jane C. Caldwell

Copyright © 2012 Hans Mielke and Ursula Gundert-Remy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Teorell, “Kinetics of distribution of substances administered to body,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 57, pp. 205–240, 1937.
  2. S. G. Dahl, L. Aarons, U. Gundert-Remy et al., “Incorporating physiological and biochemical mechanisms into pharmacokinetic-pharmacodynamic models: a conceptual framework,” Basic and Clinical Pharmacology and Toxicology, vol. 106, no. 1, pp. 2–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. W. W. Mapleton, “Chest gas-exchange theory using an electrical analogue,” Journal of Applied Physiology, vol. 19, pp. 1193–1199, 1964.
  4. M. N. Ashman, W. B. Blesser, and R. M. Epstein, “A nonlinear model for the uptake and distribution of halothane in man,” Anesthesiology, vol. 33, no. 4, pp. 419–429, 1970. View at Scopus
  5. P. Poulin and F. P. Theil, “Prediction of pharmacokinetics prior to in vivo studies—II. Generic physiologically based pharmacokinetic models of drug disposition,” Journal of Pharmaceutical Sciences, vol. 91, no. 5, pp. 1358–1370, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. IPCS/WHO, “Characterization and Application of Physiologically Based Pharmacokinetic models in Risk Assessment,” 2010.
  7. IPCS/WHO, “Chemical specific adjustment factors for interspecies differences and intraspecies variability: guidance document for use of data in dose/concentration response assessment,” 2005.
  8. H. Mielke and U. Gundert-Remy, “Bisphenol A levels in blood depend on age and exposure,” Toxicology Letters, vol. 190, no. 1, pp. 32–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. European Union (EU), “Risk Assessment Report 4,4-isopropylidenediphenol (bisphenol-A) CAS No: 80-05-7 EINECS No: 201-245-8 Series,” 3rd Priority List Volume 37, Office for Official Publications of the European Communities, 2003.
  10. EFSA (European Food Safety Authority), “Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) related to 2,2-bis(4-hydroxyphenyl)propane; Question number EFSA-Q-2005-100,” 2011, http://www.efsa.europa.eu/en/efsajournal/pub/428.htm.
  11. F. S. vom Saal and C. Hughes, “An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment,” Environmental Health Perspectives, vol. 113, no. 8, pp. 926–933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Zaya, R. N. Hines, and J. C. Stevens, “Epirubicin glucuronidation and UGT2B7 developmental expression,” Drug Metabolism and Disposition, vol. 34, no. 12, pp. 2097–2101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Ye, Z. Kuklenyik, L. L. Needham, and A. M. Calafat, “Quantification of urinary conjugates of bisphenol A, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 383, no. 4, pp. 638–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Kurebayashi, K. Okudaira, and Y. Ohno, “Species difference of metabolic clearance of bisphenol A using cryopreserved hepatocytes from rats, monkeys and humans,” Toxicology Letters, vol. 198, no. 2, pp. 210–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Abraham, H. Mielke, W. Huisinga, and U. Gundert-Remy, “Elevated internal exposure of children in simulated acute inhalation of volatile organic compounds: effects of concentration and duration,” Archives of Toxicology, vol. 79, no. 2, pp. 63–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. K. Kuester and I. G. Sipes, “Prediction of metabolic clearance of bisphenol A (4,4′-dihydroxy-2,2- diphenylpropane) using cryopreserved human hepatocytes,” Drug Metabolism and Disposition, vol. 35, no. 10, pp. 1910–1915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. E. Barter, M. K. Bayliss, P. H. Beaune et al., “Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver,” Current Drug Metabolism, vol. 8, no. 1, pp. 33–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Hanioka, T. Naito, and S. Narimatsu, “Human UDP-glucuronosyltransferase isoforms involved in bisphenol A glucuronidation,” Chemosphere, vol. 74, no. 1, pp. 33–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Duanmu, A. Weckle, S. B. Koukouritaki et al., “Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 3, pp. 1310–1317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Ginsberg and D. C. Rice, “Does rapid metabolism ensure negligible risk from bisphenol A?” Environmental Health Perspectives, vol. 117, no. 11, pp. 1639–1643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Nishikawa, H. Iwano, R. Yanagisawa, N. Koike, H. Inoue, and H. Yokota, “Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus,” Environmental Health Perspectives, vol. 118, no. 9, pp. 1196–1203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Hengstler, H. Foth, T. Gebel, et al., “Cutting edge topics of the current controversy on BPA,” Critical Reviews in Toxicology, vol. 41, pp. 263–291, 2011.
  23. “EFSA toxicokinetics of bisphenol A,” The EFSA Journal, vol. 759, pp. 1–10, 2008.
  24. H. Mielke, F. Partosch, and U. Gundert-Remy, “The contribution of dermal exposure to the internal exposure of bisphenol A in man,” Toxicology Letters, vol. 204, no. 2-3, pp. 190–198, 2011. View at Publisher · View at Google Scholar
  25. J. Sajiki, K. Takahashi, and J. Yonekubo, “Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography,” Journal of Chromatography B, vol. 736, no. 1-2, pp. 255–261, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Padmanabhan, K. Siefert, S. Ransom et al., “Maternal bisphenol-A levels at delivery: a looming problem?” Journal of Perinatology, vol. 28, no. 4, pp. 258–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Biedermann, P. Tschudin, and K. Grob, “Transfer of bisphenol A from thermal printer paper to the skin,” Analytical and Bioanalytical Chemistry, vol. 398, no. 1, pp. 571–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Mendum, E. Stoler, H. van Benschoten, and J. C. Warner, “Concentration of bisphenol A in thermal paper,” Green Chemistry Letters and Reviews, vol. 4, no. 1, pp. 81–86, 2011.
  29. T. Östberg and E. Noaksson, “Bisfenol A in svenska kvitton,” Analysresultat. Institutet för tillämoa grön kemi. Jämtlands läns Landsting, 2010.
  30. FAO/WHO Joint FAO/WHO, “Expert Meeting to Review Toxicological and Health Aspects of Bisphenol A,” Summary Report, 2010.
  31. R. W. Tyl, C. B. Myers, M. C. Marr et al., “Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats,” Toxicological Sciences, vol. 68, no. 1, pp. 121–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. J. Mørck, G. Sorda, N. Bechi et al., “Placental transport and in vitro effects of Bisphenol A,” Reproductive Toxicology, vol. 30, no. 1, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Zalko, C. Jacques, H. Duplan, S. Bruel, and E. Perdu, “Viable skin efficiently absorbs and metabolizes bisphenol A,” Chemosphere, vol. 82, no. 3, pp. 424–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Tsukioka, J. Terasawa, S. Sato, Y. Hatayama, T. Makino, and H. Nakazawa, “Development of analytical method for determining trace amounts of BPA in urine samples and estimation of exposure to BPA,” Journal of Environmental Chemistry, vol. 14, pp. 57–63, 2004.
  35. J. G. Teeguarden, A. M. Calafat, X. Ye et al., “Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure,” Toxicological Sciences, vol. 123, no. 1, pp. 48–57, 2011. View at Publisher · View at Google Scholar
  36. A. M. Calafat, J. Weuve, X. Ye et al., “Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants,” Environmental Health Perspectives, vol. 117, no. 4, pp. 639–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Mielke, K. Abraham, M. Götz et al., “Physiologically based toxicokinetic modelling as a tool to assess target organ toxicity in route-to-route extrapolation—the case of coumarin,” Toxicology Letters, vol. 202, no. 2, pp. 100–110, 2011. View at Publisher · View at Google Scholar
  38. EFSA (European Food Safety Authority), “Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to Coumarin,” The EFSA Journal, vol. 104, pp. 1–136, 2004.
  39. W. Umbach, Kosmetik von Kopf bis Fuss, Wiley-VCH, Weinheim, Germany, 3rd edition, 2004.
  40. “Inspectorate of the German States,” Internal Report, 2005.
  41. Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers (SCCNFP), “Opinion concerning 6-Acetyl-1,1,2,4,4,7-Hexamethyltetryltetralin (AHTN) SCCNFP/0609/02,” 2002.
  42. Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers (SCCNFP), “Opinion concerning Hexahydrohexamethyl-cyclopenta (γ)-2-benzopyran (HHCB) SCCNFP/0610/02,” 2002.
  43. Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers (SCCNFP), “Note for Guidance for testing of cosmetic ingredients and their safety evaluation,” 5th revision, 2003.
  44. Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers (SCCNFP), 2004, “Opinion concerning musk xylene and musk keton, SCCNFP/0817/04. Scientific Committee on Consumer Products (SCCP). Note for Guidance for testing of cosmetic ingredients and their safety evaluation,” 6th revision, 2006.
  45. Scientific Committee on Food (SCF), Opinion on coumarin ( a constituent of natural flavouring source materials limited by Annex II of flavourings directive 88/388/EEC), expressed on 16 December 1994. Reports of the Scientific Committee on Food (36th series). European Commission, Directorate General Industry. Luxembourg, 1997.
  46. S. A. J. Beckley-Kartey, S. A. M. Hotchkiss, and M. Capel, “Comparative in vitro skin absorption and metabolism of coumarin (1,2-benzopyrone) in human, rat, and mouse,” Toxicology and Applied Pharmacology, vol. 145, no. 1, pp. 34–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Ford, D. R. Hawkins, B. C. Mayo, and A. M. Api, “The in vivo dermal absorption and metabolism of [4-14C]coumarin by rats and by human volunteers under simulated conditions of use in fragrances,” Food and Chemical Toxicology, vol. 39, no. 2, pp. 153–162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. BfR (Bundesinstitut fuer Risikobewertung). Kosmetika können wesentlich zur Gesamtaufnahme von Cumarin beitragen. (BfR Nr. 049/2007), 2007, http://www.bfr.bund.de/cm/206/kosmetika_koennen_wesentlich_zur_gesamtaufnahme_von_cumarin_beitragen.pdf.
  49. W. A. Ritschel, K. A. Hoffmann, H. S. Tan, and P. R. Sanders, “Pharmacokinetics of coumarin upon i.v. administration in man,” Drug Research, vol. 26, no. 7, pp. 1382–1387, 1976. View at Scopus
  50. W. A. Ritschel, M. E. Brady, and H. S.I. Tan, “Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man,” European Journal of Clinical Pharmacology, vol. 12, no. 6, pp. 457–461, 1977.
  51. W. A. Ritschel, M. E. Brady, and H. S. I. Tan, “First-pass effect of coumarin in man,” International Journal of Clinical Pharmacology Therapy and Toxicology, vol. 17, no. 3, pp. 99–103, 1979. View at Scopus
  52. W. A. Ritschel and S. A. Hussain, “Transdermal absorption and topical availability of coumarin,” Methods & Findings in Experimental & Clinical Pharmacology, vol. 10, pp. 165–169, 1988.
  53. I. M. C. M. Rietjens, M. G. Boersma, M. Zaleska, and A. Punt, “Differences in simulated liver concentrations of toxic coumarin metabolites in rats and different human populations evaluated through physiologically based biokinetic (PBBK) modeling,” Toxicology in Vitro, vol. 22, no. 8, pp. 1890–1901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Loizou, M. Spendiff, H. A. Barton et al., “Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps,” Regulatory Toxicology and Pharmacology, vol. 50, no. 3, pp. 400–411, 2008. View at Publisher · View at Google Scholar
  55. H. A. Barton, W. A. Chiu, R. Woodrow Setzer et al., “Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation,” Toxicological Sciences, vol. 99, no. 2, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Y. Weiße and W. Huisinga, “Error-controlled global sensitivity analysis of ordinary differential equations,” Journal of Computational Physics, vol. 230, no. 17, pp. 6824–6842, 2011. View at Publisher · View at Google Scholar