About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 404329, 14 pages
http://dx.doi.org/10.1155/2012/404329
Research Article

Modeling the Human Kinetic Adjustment Factor for Inhaled Volatile Organic Chemicals: Whole Population Approach versus Distinct Subpopulation Approach

1Département de Santé Environnementale et de Santé au Travail, Université de Montréal, Montreal, QC, Canada H3T 1A8
2Institut National de Santé Publique du Québec, Montréal, QC, Canada H2P 1E2

Received 21 September 2011; Accepted 21 October 2011

Academic Editor: Marina V. Evans

Copyright © 2012 M. Valcke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Dourson, S. P. Felter, and D. Robinson, “Evolution of science-based uncertainty factors in noncancer risk assessment,” Regulatory Toxicology and Pharmacology, vol. 24, no. 2, pp. 108–120, 1996.
  2. M. L. Dourson and J. F. Stara, “Regulatory history and experimental support of uncertainty (safety) factors,” Regulatory Toxicology and Pharmacology, vol. 3, no. 3, pp. 224–238, 1983.
  3. U.S.EPA., A review of the reference dose and reference concentration process. Risk Assessment Forum. EPA/630/P-02/00F. Washington, DC, USA, 2002.
  4. P. S. Price, R. E. Keenan, and B. Schwab, “Defining the interindividual (intraspecies) uncertainty factor,” Human and Ecological Risk Assessment, vol. 5, no. 5, pp. 1023–1033, 1999. View at Scopus
  5. J. L. C. M. Dorne and A. G. Renwick, “The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans,” Toxicological Sciences, vol. 86, no. 1, pp. 20–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. IPCS, Assessing Human Health Risks of Chemicals: Derivation of Guidance Values for Health Based Exposure Limits, World Health Organization, International Panel on Chemical Safety. Environmental Health Criteria, Geneva, Switzerland, 1994.
  7. A. G. Renwick and N. R. Lazarus, “Human variability and noncancer risk assessment—an analysis of the default uncertainty factor,” Regulatory Toxicology and Pharmacology, vol. 27, no. 1 I, pp. 3–20, 1998. View at Publisher · View at Google Scholar
  8. IPCS, Chemical-Specific Adjustment Factors (CSAFs) for Interspecies Differences and Human Variability: Guidance Document for the Use of Data in Dose/Concentration-Response Assessment, WHO, Geneva, Switzerland, 2005.
  9. M. E. Meek, A. Renwick, E. Ohanian et al., “Guidelines for application of chemical-specific adjustment factors in dose/concentration-response assessment,” Toxicology, vol. 181-182, pp. 115–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. U.S.EPA., Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, DC, USA, 2010.
  11. G. Ginsberg, D. Hattis, B. Sonawane et al., “Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature,” Toxicological Sciences, vol. 66, no. 2, pp. 185–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. C. M. Dorne, K. Walton, and A. G. Renwick, “Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review,” Food and Chemical Toxicology, vol. 43, no. 2, pp. 203–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. C. M. Dorne, “Human variability in hepatic and renal elimination: implications for risk assessment,” Journal of Applied Toxicology, vol. 27, no. 5, pp. 411–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Nong, D. G. McCarver, R. N. Hines, and K. Krishnan, “Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene,” Toxicology and Applied Pharmacology, vol. 214, no. 1, pp. 78–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Valcke and K. Krishnan, “Evaluation of the impact of the exposure route on the human kinetic adjustment factor,” Regulatory Toxicology and Pharmacology, vol. 59, no. 2, pp. 258–269, 2011. View at Publisher · View at Google Scholar
  16. M. Valcke and K. Krishnan, “An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants,” Toxicology, vol. 286, no. 1–3, pp. 36–47, 2011. View at Publisher · View at Google Scholar
  17. A. K. Mörk and G. Johanson, “Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach,” Toxicological Sciences, vol. 116, no. 1, pp. 336–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. J. Ronis, K. O. Lindros, and M. Ingelman-Sundberg, “The CYP2E family,” in Cytochrome P450 Metabolic and Toxicological Aspects, C. Ioannides, Ed., pp. 211–240, CRC Press, Boca Raton, Fla, USA, 1996.
  19. E. K. Johnsrud, S. B. Koukouritaki, K. Divakaran, L. L. Brunengraber, R. N. Hines, and D. G. McCarver, “Human hepatic CYP2E1 expression during development,” Journal of Pharmacology and Experimental Therapeutics, vol. 307, no. 1, pp. 402–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Lipscomb, L. K. Teuschler, J. C. Swartout, C. A. F. Striley, and J. E. Snawder, “Variance of microsomal protein and cytochrome P450 2E1 and 3A forms in adult human liver,” Toxicology Mechanisms and Methods, vol. 13, no. 1, pp. 45–51, 2003. View at Scopus
  21. A. Nannelli, A. De Rubertis, V. Longo, and P. G. Gervasi, “Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat,” Archives of Toxicology, vol. 79, no. 2, pp. 74–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Haddad, M. Béliveau, R. Tardif, and K. Krishnan, “A PBPK modeling-based approach to account for interactions in the health risk assessment of chemical mixtures,” Toxicological Sciences, vol. 63, no. 1, pp. 125–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. R. H. Reitz, P. S. McCroskey, C. N. Park, M. E. Andersen, and M. I. Gargas, “Development of a physiologically based pharmacokinetic model for risk assessment with 1,4-dioxane,” Toxicology and Applied Pharmacology, vol. 105, no. 1, pp. 37–54, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Andersen, “Pharmacokinetics of inhaled gases and vapors,” Neurobehavioral Toxicology and Teratology, vol. 3, no. 4, pp. 383–389, 1981. View at Scopus
  25. W. A. Chiu and P. White, “Steady-state solutions to PBPK models and their applications to risk assessment I: route-to-route extrapolation of volatile chemicals,” Risk Analysis, vol. 26, no. 3, pp. 769–780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. G. A. Csanády and J. G. Filser, “The relevance of physical activity for the kinetics of inhaled gaseous substances,” Archives of Toxicology, vol. 74, no. 11, pp. 663–672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Pelekis, D. Krewski, and K. Krishnan, “Physiologically based algebraic expressions for predicting steady-state toxicokinetics of inhaled vapors,” Toxicology Methods, vol. 7, no. 3, pp. 205–225, 1997. View at Scopus
  28. P. S. Price, R. B. Conolly, C. F. Chaisson et al., “Modeling interindividual variation in physiological factors used in PBPK models of humans,” Critical Reviews in Toxicology, vol. 33, no. 5, pp. 469–503, 2003. View at Scopus
  29. ICRP, “Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89,” Annals of the ICRP, vol. 32, no. 3-4, pp. 5–265, 2002.
  30. Statistiques Canada, Estimations de la population selon le sexe et le groupe d'âge au 1er juillet 2010, Canadahttp://www.statcan.gc.ca/daily-quotidien/100929/t100929b4-fra.htm.
  31. S. J. Ventura, J. C. Abma, W. D. Mosher, and S. K. Henshaw, “Estimated pregnancy rates by outcome for the United States, 1990–2004,” National Vital Statistics Reports, vol. 56, no. 15, pp. 1–28, 2008. View at Scopus
  32. M. Jamei, G. L. Dickinson, and A. Rostami-Hodjegan, “A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of 'bottom-up' vs 'top-down' recognition of covariates,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 1, pp. 53–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. F. Hudachek and D. L. Gustafson, “Customized in silico population mimics actual population in docetaxel population pharmacokinetic analysis,” Journal of Pharmaceutical Sciences, vol. 100, no. 3, pp. 1156–1166, 2011. View at Publisher · View at Google Scholar
  34. P. Brochu, J. F. Ducré-Robitaille, and J. Brodeur, “Physiological daily inhalation rates for free-living pregnant and lactating adolescents and women aged 11 to 55 years, using data from doubly labeled water measurements for use in health risk assessment,” Human and Ecological Risk Assessment, vol. 12, no. 4, pp. 702–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Brochu, J. Brodeur, and K. Krishnan, “Derivation of physiological inhalation rates in children, adults, and elderly based on nighttime and daytime respiratory parameters,” Inhalation Toxicology, vol. 23, no. 2, pp. 74–94, 2011. View at Publisher · View at Google Scholar
  36. E. M. Faustman and P. Ribeiro, “Pharmacokinetic consideration in developmental toxicity,” in Developmental Toxicology: Risk Assessment and the Future, R. D. Hood, Ed., pp. 109–136, D. Van Nostrand Reinhold Company, New York, NY, USA, 1990.
  37. K. Price, S. Haddad, and K. Krishnan, “Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children,” Journal of Toxicology and Environmental Health—Part A, vol. 66, no. 5, pp. 417–433, 2003. View at Publisher · View at Google Scholar
  38. R. Sarangapani, P. Robinan Gentry, T. R. Covington, J. G. Teeguarden, and H. J. Clewell, “Evaluation of the potential impact of age- and gender-specific lung morphology and ventilation rate on the dosimetry of vapors,” Inhalation Toxicology, vol. 15, no. 10, pp. 987–1016, 2003. View at Scopus
  39. WHO, Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals, Environmental Health Criteria 237, World Health Organization, Geneva, Switzerland, 2006.
  40. M. Pelekis, L. A. Gephart, and S. E. Lerman, “Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds,” Regulatory Toxicology and Pharmacology, vol. 33, no. 1, pp. 12–20, 2001. View at Publisher · View at Google Scholar
  41. M. Pelekis, M. J. Nicolich, and J. S. Gauthier, “Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors,” Risk Analysis, vol. 23, no. 6, pp. 1239–1255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. L. T. Haber, A. Maier, P. R. Gentry, H. J. Clewell, and M. L. Dourson, “Genetic polymorphisms in assessing interindividual variability in delivered dose,” Regulatory Toxicology and Pharmacology, vol. 35, no. 2 I, pp. 177–197, 2002. View at Publisher · View at Google Scholar
  43. H. J. Clewell, P. R. Gentry, T. R. Covington, R. Sarangapani, and J. G. Teeguarden, “Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry,” Toxicological Sciences, vol. 79, no. 2, pp. 381–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Neafsey, G. Ginsberg, D. Hattis, D. O. Johns, K. Z. Guyton, and B. Sonawane, “Genetic polymorphism in CYP2E1: population distribution of CYP2E1 activity,” Journal of Toxicology and Environmental Health—Part B, vol. 12, no. 5-6, pp. 362–388, 2009. View at Publisher · View at Google Scholar · View at Scopus